First demonstration of new hair follicle generation in an animal model

May 16, 2007
New Hair Follicle Generation
Growth of regenerated hair follicles over 45 days. Arrows indicate hair shaft. The bulge is the area from which new hair shafts arise. The regenerated follicles possess normal stem cells and function normally by producing a hair shaft and cycling through growth phases. Credit: George Cotsarelis, MD, University of Pennsylvania School of Medicine; Nature

Researchers at the University of Pennsylvania School of Medicine have found that hair follicles in adult mice regenerate by re-awakening genes once active only in developing embryos. These findings provide unequivocal evidence for the first time that, like other animals such as newts and salamanders, mammals have the power to regenerate. These findings are published in the May 17 issue of Nature.

A better understanding of this process could lead to novel treatments for hair loss, other skin and hair disorders, and wounds.

“We showed that wound healing triggered an embryonic state in the skin which made it receptive to receiving instructions from wnt proteins,” says senior author George Cotsarelis, MD, Associate Professor of Dermatology. “The wnts are a network of proteins implicated in hair-follicle development.”

Researchers previously believed that adult mammal skin could not regenerate hair follicles. In fact, investigators generally believe that mammals had essentially no true regenerative qualities. (The liver can regenerate large portions, but it is not de novo regeneration; some of the original liver has to remain so that it can regenerate.)

In this study, researchers found that wound healing in a mouse model created an “embryonic window” of opportunity. Dormant embryonic molecular pathways were awakened, sending stem cells to the area of injury. Unexpectedly, the regenerated hair follicles originated from non-hair-follicle stem cells.

“We’ve found that we can influence wound healing with wnts or other proteins that allow the skin to heal in a way that has less scarring and includes all the normal structures of the skin, such as hair follicles and oil glands, rather than just a scar,” explains Cotsarelis.

By introducing more wnt proteins to the wound, the researchers found that they could take advantage of the embryonic genes to promote hair-follicle growth, thus making skin regenerate instead of just repair. Conversely by blocking wnt proteins, they also found that they could stop the production of hair follicles in healed skin.

Increased wnt signaling doubled the number of new hair follicles. This suggests that the embryonic window created by the wound-healing process can be used to manipulate hair-follicle regeneration, leading to novel ways to treat hair loss and hair overgrowth.

These findings go beyond just a possible treatment for male-pattern baldness. If researchers can effectively control hair growth, then they could potentially find cures for people with hair and scalp disorders, such as scarring alopecia where the skin scars, and hair overgrowth.

Source: University of Pennsylvania School of Medicine

Explore further: Vegetable oil ingredient key to destroying gastric disease bacteria

add to favorites email to friend print save as pdf

Related Stories

Surrogate sushi: Japan biotech for bluefin tuna

2 hours ago

Of all the overfished fish in the seas, luscious, fatty bluefin tuna are among the most threatened. Marine scientist Goro Yamazaki, who is known in this seaside community as "Young Mr. Fish," is working to ...

Recommended for you

A hybrid vehicle that delivers DNA

17 hours ago

A new hybrid vehicle is under development. Its performance isn't measured by the distance it travels, but rather the delivery of its cargo: vaccines that contain genetically engineered DNA to fight HIV, cancer, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.