Scientists discover new life in the Antarctic deep sea

May 16, 2007
Scientists discover new life in the Antarctic deep sea
Anthosactis pearseae , a newly discovered species of sea anemone, are barely bigger than a human molar. The angled tip of the tweezers that the four anemones are shown against is about 2 centimeters (0.7 inches) long. Credit: Kevin Fitzsimons

Scientists have found hundreds of new marine creatures in the vast, dark deep-sea surrounding Antarctica. Carnivorous sponges, free-swimming worms, crustaceans, and molluscs living in the Weddell Sea provide new insights into the evolution of ocean life.

Reporting this week in the journal Nature, scientists describe how creatures in the deeper parts of the Southern Ocean - the source for much of the deep water in the world ocean – are likely to be related to animals living in both the adjacent shallower waters and in other parts of the deep ocean.

A key question for scientists is whether shallow water species colonised the deep ocean or vice versa. The research findings suggest the glacial cycle of advance and retreat of ice led to an intermingling of species that originated in shallow and deep water habitats.

Lead author Professor Angelika Brandt from the Zoological Institute and Zoological Museum, University Hamburg says,

"The Antarctic deep sea is potentially the cradle of life of the global marine species. Our research results challenge suggestions that the deep sea diversity in the Southern Ocean is poor. We now have a better understanding in the evolution of the marine species and how they can adapt to changes in climate and environments."

Dr Katrin Linse, marine biologist from British Antarctic Survey, says, "What was once thought to be a featureless abyss is in fact a dynamic, variable and biologically rich environment. Finding this extraordinary treasure trove of marine life is our first step to understanding the complex relationships between the deep ocean and distribution of marine life."

Three research expeditions, as part of the ANDEEP project (Antarctic benthic deep-sea biodiversity), onboard the German research ship Polarstern took place between 2002 and 2005. An international team from 14 research organisations investigated the seafloor landscape, its continental slope rise and changing water depths to build a picture of this little known region of the ocean. They found over 700 new species.

Source: British Antarctic Survey

Explore further: Invasive vines swallow up New York's natural areas

add to favorites email to friend print save as pdf

Related Stories

Scientists tether lionfish to Cayman reefs

Apr 18, 2014

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Scientists explore one of Earth's deepest ocean trenches

Apr 11, 2014

What lives in the deepest part of the ocean—the abyss? A team of researchers funded by the National Science Foundation (NSF) will use the world's only full-ocean-depth, hybrid, remotely-operated vehicle, ...

Researchers decipher climate paradox from the Miocene

Apr 11, 2014

Scientists of the German Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), have deciphered a supposed climate paradox from the Miocene era by means of complex model simulations. ...

Sunken logs create new worlds for seafloor animals

Apr 09, 2014

When it comes to food, most of the deep sea is a desert. Many seafloor animals feed on marine snow—the organic remnants of algae and animals that live in the sunlit surface waters, far above. However, marine ...

Recommended for you

Genome yields insights into golden eagle vision, smell

54 minutes ago

Purdue and West Virginia University researchers are the first to sequence the genome of the golden eagle, providing a bird's-eye view of eagle features that could lead to more effective conservation strategies.

Genetic code of the deadly tsetse fly unraveled

2 hours ago

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

2 hours ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Engineered E. coli produces high levels of D-ribose

2 hours ago

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Study links California drought to global warming

While researchers have sometimes connected weather extremes to man-made global warming, usually it is not done in real time. Now a study is asserting a link between climate change and both the intensifying California drought ...

Autism Genome Project delivers genetic discovery

A new study from investigators with the Autism Genome Project, the world's largest research project on identifying genes associated with risk for autism, has found that the comprehensive use of copy number variant (CNV) genetic ...