Quasar Study Provides Insights into Composition of the Stars That Ended the 'Dark Ages'

Jan 12, 2006

A team of astronomers has uncovered new evidence about the stars whose formation ended the cosmic "Dark Ages" a few hundred million years after the Big Bang.

In a presentation today at the annual winter meeting of the American Astronomical Society (AAS), California Institute of Technology graduate student George Becker is scheduled to discuss his team's investigation of several faraway quasars and the gas between the quasars and Earth. The paper on which his lecture is based will be published in the Astrophysical Journal in March.

One quasar in the study seems to reveal numerous patches of "neutral" gas, made up of atoms where the nucleus and electrons cling together, floating in space when the universe was only about 10 percent of its present age. This gas is thought to have existed in significant quantities only within a certain time-frame in the early universe. Prior to the Dark Ages, all material would have been too hot for atomic nuclei to combine with their electrons; after, the light from newly-formed stars would have reached the atoms and stripped off the electrons.

"There should have been a period when most of the atoms in the universe were neutral," Becker explains. "This would have continued until stars and galaxies began forming."

In other words, the universe went from a very hot, very dense state following the Big Bang where all atomic nuclei and electrons were too energetic to combine, to a less dense and cooler phase-albeit a dark one-where the nuclei and the electrons were cool enough to hold onto each other and form neutral atoms, to today's universe where the great majority of atoms are ionized by energetic particles of light.

Wallace Sargent, who coined the term Dark Ages in 1985 and who is Becker's supervising professor, adds that analyzing the quasars to learn about the early universe is akin to looking at a lighthouse in order to study the air between you and it. During the Dark Ages, neutral atoms filling the universe would have acted like a fog, blocking out the light from distant objects. To end the Dark Ages, enough stars and galaxies needed to form to burn this "cosmic fog" away.

"We may have detected the last wisps of the fog," explains Sargent, who is Bowen Professor of Astronomy at Caltech.

The uniqueness of the new study is the finding that the chemical elements of the cool, un-ionized gas seem to have come from relatively ordinary stars. The researchers think this is so because the elements they detect in the gas- oxygen, carbon, and silicon-are in proportions that suggest the materials came from Type II supernovae.

These particular explosions are caused when massive stars collapse and then rebound to form a gigantic explosion. The stars needed to create these explosions can be more than ten times the mass of the sun, yet they are common over almost the entire history of the universe.

However, astronomers believe that the very first stars in the universe would have been much more massive, up to hundreds of times the mass of the sun, and would have left behind a very different chemical signature.

"If the first stars in the universe were indeed very massive stars," Becker explains, "then their chemical signature was overwhelmed by smaller, more typical stars very soon after."

Becker and his colleagues believe they are seeing material from stars that was blown into space by the supernovae explosions and mixed with the pristine gas produced by the Big Bang. Specifically, they are looking at the spectra of the light from quasars as it is absorbed during its journey through the mixed-up gas.

The quasars in this particular study are from the Sloan Digital Sky Survey, an ongoing mapping project that seeks, in part, to determine the distances of 100,000 quasars. The researchers focused on nine of the most distant quasars known, with redshifts greater than 5, meaning that the light we see from these objects would have been emitted when the universe was at most 1.2 billion years old.

Of the nine, three are far enough away that they may have been at the edge of the dark period. Those three have redshifts greater than 6, meaning that the universe was less than 1 billion years old when they emitted the light we observe. By comparison, the present age of the universe is believed to be about 13.7 billion years.

Becker says that the study in part promises a new tool to investigate the nature of stars in the early universe. "Now that we've seen these systems, it's reasonable to ask if their composition reflects the output of those first very massive stars, or whether the mix of chemicals is what you would expect from more ordinary stars that ended in Type II supernovae.

"It turns out that the latter is the case," Becker says. "The chemical composition appears to be very ordinary."

Thus, the study provides a new window into possible transitions in the early universe, Sargent adds. "The relative abundance of these elements gives us in principle a way of finding out what the first stars were.

"This gives us insight into what kind of stars ended the Dark Ages."

Observations for this study were performed using the 10-meter (400-inch) Keck I Telescope on Mauna Kea, Hawaii. In addition to Becker and Sargent, the other authors are Michael Rauch of the Carnegie Observatories and Robert A. Simcoe of the MIT Center for Space Research.

Source: Caltech

Explore further: Elon Musk's SpaceX drops lawsuit against Air Force

add to favorites email to friend print save as pdf

Related Stories

Why is Andromeda coming toward us?

Jan 23, 2015

I don't want to alarm you, but there's a massive galaxy heading our way and will collide with us in a few billion years. But aren't most galaxies speeding away? Why is Andromeda on a collision course with ...

The Wild West of physics

Jan 22, 2015

Call it macro-micro physics: the study of the huge paired with the study of the very, very small.

Snapshot of cosmic burst of radio waves

Jan 19, 2015

A strange phenomenon has been observed by astronomers right as it was happening - a 'fast radio burst'. The eruption is described as an extremely short, sharp flash of radio waves from an unknown source in ...

Recommended for you

Elon Musk's SpaceX drops lawsuit against Air Force

4 hours ago

A spacecraft company run by billionaire Elon Musk has dropped a lawsuit alleging the U.S. Air Force improperly awarded a contract to launch military satellites to a joint venture between Boeing and Lockheed Martin.

NASA spacecraft almost to Pluto: Smile for the camera!

Jan 23, 2015

It's showtime for Pluto. NASA's New Horizons spacecraft has traveled 3 billion miles and is nearing the end of its nine-year journey to Pluto. Sunday, it begins photographing the mysterious, unexplored, icy ...

Chandra celebrates the International Year of Light

Jan 23, 2015

The year of 2015 has been declared the International Year of Light (IYL) by the United Nations. Organizations, institutions, and individuals involved in the science and applications of light will be joining ...

Gullies on Vesta suggest past water-mobilized flows

Jan 23, 2015

(Phys.org)—Protoplanet Vesta, visited by NASA's Dawn spacecraft from 2011 to 2013, was once thought to be completely dry, incapable of retaining water because of the low temperatures and pressures at its ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.