Slowing the racing heart

May 11, 2007

Scientists have discovered how we put the brakes on a racing heartbeat.

Researchers at the University of Illinois at Chicago explain in the May 11 issue of Circulation Research how an enzyme acts on the heart's pacemaker to slow the rapid beating of the heart's "fight-or-flight" reaction to adrenaline.

A single cell in the upper right chamber is responsible for setting the pace of the beating heart, triggering its neighbor cells to beat. In the human heart, one cell -- the pacemaker cell -- beats faster or slower to induce a rhythmic heartbeat that varies to increase or decrease the blood flow to the body as we eat, sleep or exercise.

"Disturbances of pacemaker control are common in heart diseases. When the heartbeat becomes non-rhythmic and chaotic, it can result in fatal arrhythmias and stroke," said R. John Solaro, UIC distinguished university professor and principal investigator of the study.

Current treatment of arrhythmia requires destruction of tissue surrounding a chaotic pacemaker, followed by insertion of a mechanical pacemaker that can regulate the heartbeat.

"Understanding the molecular regulation of the heart's pacemaker opens the possibility of less drastic treatment options, including drug interventions," said Solaro, who is also director of the center for cardiovascular research and head of physiology and biophysics at UIC.

Solaro worked with Yunbo Ke, UIC research assistant professor of physiology and biophysics and first author of the paper, and colleagues in England at Oxford and Manchester on characterizing and isolating the pacemaker cell.

The UIC researchers demonstrated that an enzyme called Pak 1, present in high concentrations in the heart, signals depression in the action of adrenaline and adrenaline-like chemicals on the pacemaker cell, playing an important role in slowing down the heart rate.

"The enzyme works through calcium and potassium channels that we know to be key players in the generation and regulation of the pacemaker activity," said Ke.

"Although adrenaline and other mechanisms that accelerate the heart rate have been well studied, mechanisms that might act as a brake are poorly understood," said Solaro.

"Identification of this previously unknown molecular mechanism for slowing the heartbeat may offer new avenues of diagnosis, drug design and treatment of many common heart diseases," said Solaro.

"Further, now that we know something of how this enzyme works in the pacemaker cell, we may discover it is involved in the regulation of other processes, particularly in the brain, where it is also highly expressed," added Ke.

Source: University of Illinois at Chicago

Explore further: Better living through mitochondrial derived vesicles

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Better living through mitochondrial derived vesicles

15 hours ago

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

16 hours ago

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

Engineering new bone growth

19 hours ago

MIT chemical engineers have devised a new implantable tissue scaffold coated with bone growth factors that are released slowly over a few weeks. When applied to bone injuries or defects, this coated scaffold ...

User comments : 0