Scientists identify cancer virus' genetic targets

May 11, 2007

University of Florida researchers have identified specific human genes targeted by a virus believed to cause Kaposi’s sarcoma, a rare form of cancer associated with AIDS and with organ transplants that causes patches of red or purple tissue to grow under people’s skin.

Writing today (May 11) in PLOS Pathogens, the scientists are the first to name human genes that are actually hijacked by a virus wielding minimolecules called microRNAs.

Apparently the viral microRNAs silence genes known to influence growth of blood vessels and suppress tumor cells. Scientists believe that with the regulatory genes sidelined, blood vessel growth runs rampant, resulting in the typical markings of Kaposi’s sarcoma.

"The hallmarks of Kaposi’s sarcoma are red spots full of blood vessels on the necks, arms and legs of patients," said Rolf Renne, Ph.D., an associate professor of molecular genetics and microbiology at the College of Medicine and a member of the UF Shands Cancer Center and the UF Genetics Institute. "We think that the tumor virus is using microRNAs to make sure infected cells are well nourished and protected from the human immune system."

Thought to be little more than cellular debris less than a decade ago, microRNAs are short chemical strands that strategically silence gene activity by binding to RNA within cells. They play a role in healthy development — no one with a complete set of fingers and toes would want their genes to keep adding new digits — and they evidently may be involved in the onset of some diseases, including cancer.

Now it seems that even foreign microRNA has a say in human health.

In an effort to identify human gene targets, UF scientists equipped cultured human cells with just 10 genes from the Kaposi’s sarcoma virus, thus endowing human cells with the ability to produce viral microRNA. Scientists then screened the more than 30,000 genes that exist within human cells and found that 81 were strongly inhibited in the presence of the viral microRNA.

Five of the most affected genes are known to suppress tumor and blood vessel growth and influence the body’s immune response, suggesting that the herpesvirus uses microRNA to create a cancerous environment in which it thrives, undetected by the body’s natural defenses.

Researchers confirmed the results of the microRNA gene profiling with tests to detect individual microRNA activity in specific genes.
"The data beautifully showed which genes were regulated by the viral microRNA," said Henry Baker, Ph.D., a professor and interim chairman of molecular genetics and microbiology who oversaw the gene screening. "The most exciting thing was one of the most-targeted genes on the list is thrombospondin 1. When something is important in a natural process, there are often a lot of built-in redundancies. In this case all of the viral microRNAs were used to target 34 different binding sites on the human gene, so apparently this is a virus that really wants to down-regulate thrombospondin."

In some people Kaposi’s sarcoma virus — technically it’s in the family of herpesviruses — causes patches of cancerous tissue bursting with blood vessels. The disease itself is rare in the United States and usually not life threatening, classically affecting elderly men of Mediterranean or Jewish heritage. More recently it has been found in greater numbers in people with immune systems weakened by human immunodeficiency virus infection and AIDS.

At its peak, about a quarter of sexually active men with AIDS developed Kaposi’s sarcoma, but that rate of occurrence dropped dramatically with more effective treatment of HIV infection, according to the American Cancer Society. In addition, the disease occurs in about one in 200 transplant patients in the United States.

Other as yet unidentified genes could be affected by the microRNA of Kaposi’s sarcoma virus, according to Mark Samols, a graduate student of molecular genetics and the paper’s lead author. But by knowing at least some of the major genes being targeted, scientists have a place to start as they strive to develop therapies.

"The Kaposi’s sarcoma herpesvirus is a very efficient parasite," said Jae U. Jung, Ph.D., a professor of microbiology and molecular genetics at Harvard Medical School who was not involved in the research. "It needs blood vessels to get food to the cell so it can survive, but thrombospondin blocks the virus’ food supply line. So the virus uses these small fragments of RNA to knock down the threat to its food supply. No one is certain of the exact function of viral microRNA and this paper shows at least one function and a cellular target. These are important findings."

Source: Public Library of Science

Explore further: Proton radiotherapy delivers more accurate cancer treatment, with less collateral damage

Related Stories

Viral proteins may regulate human embryonic development

Apr 21, 2015

A fertilized human egg may seem like the ultimate blank slate. But within days of fertilization, the growing mass of cells activates not only human genes but also viral DNA lingering in the human genome from ...

Key element in bacterial immune system discovered

Apr 20, 2015

A University of Otago scientist is a member of an international research team that has made an important discovery about the workings of a bacterial immune system. The finding could lead to the development ...

Whole-genome sequencing of endangered mountain gorillas

Apr 09, 2015

The first project to sequence whole genomes from mountain gorillas has given scientists and conservationists new insight into the impact of population decline on these critically endangered apes. While mountain ...

Researchers survey microbes that influence plant health

Apr 02, 2015

When driving past a sunlit field of grapes, we miss the frenzy of activity that is invisible to the human eye. Vines and roots teem with bacteria, and viruses and fungi all impact how those grapes will grow.

Pests are easier to combat in habitats rich in species

Apr 01, 2015

A diverse and species-rich agricultural landscape is also beneficial to farmers. This isn't just because there are plenty of pollinating insects, creepy crawly pest controllers and other useful helpers. Scientists ...

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.