Stardust Capsule Set to Return to Earth on Sunday

Jan 11, 2006
Artist's impression of Stardust's encounter with Comet Wild 2. Credit: NASA
Artist´s impression of Stardust´s encounter with Comet Wild 2. Scientists believe the material snatched from the trail of a comet could provide dramatic information about the birth of the solar system and the origins of life on Earth. Launched in 1999, the 385-kilogram (849-pound) probe, circled the Sun twice and then flew in January 2004 by comet Wild 2, which was located at the time next to Jupiter. Credit: NASA

This Sunday morning (15th January) at 10.12am GMT a capsule containing dust from Comet Wild 2 will return to Earth landing in the Utah Desert near Salt Lake City. The landing of the capsule marks the return of NASA's Stardust mission which has been on a three billion-mile trip to collect pristine cometary material and interstellar dust.

After their collection samples will be distributed to a limited number of specialist research teams. Four UK institutions have been invited to be part of these Preliminary Examination Teams: scientists from the Open University, the Natural History Museum, Imperial College and the University of Kent will be hoping that the material provides a key to unlock some of the secrets of the Solar System.

Prof Keith Mason, PPARC's Chief Executive Officer, which part funded the UK involvement in Stardust, said "The return of the samples from Stardust is a truly remarkable feat. It will be the first time in the history of space exploration that samples from a comet and from interstellar space will be returned to Earth. It is particularly exciting that scientists from the UK will be some of the first to analyse the samples - helping to further our understanding of the origins of the Solar System."

Following its launch in February 1999 Stardust made its brief but dramatic encounter with Comet Wild 2 (pronounced Vilt after its Swiss discoverer) on 2nd January 2004 capturing thousands of particles as it came within 146 miles of the comet. Remarkably, it survived the high speed impact of millions of dust particles and small rocks of up to half a centimetre across (Stardust passed Comet Wild 2 at 13,000 mph - over 6 times faster than a speeding bullet). Stardust's tennis racket shaped collector captured thousands of these comet particles into cells filled with Aerogel - a substance so light it almost floats in air.

After their capture the particles were locked away in a "clam shell" capsule to protect them on their journey back to Earth. Some 4 hours before landing the capsule will be released by the spacecraft, via a spring mechanism, where it will enter the Earth's atmosphere 410,000 feet over the Pacific Ocean. The capsule's aerodynamic shape and centre of gravity are designed like a shuttlecock so it will automatically orient itself with its nose down as it enters the atmosphere. At approximately 105,000 feet the capsule will release a drogue parachute to control its decent until the main parachute opens at around 10,000 feet. The capsule is scheduled to land at 10.12am GMT, touching down at a speed of 4.5 metres/second (approximately 10 miles an hour).

After landing, the capsule will be recovered by a helicopter crew who will fly it to the US Army Dugway Proving Ground, Utah for initial processing before taking it to NASA's Johnson Space Centre in Houston. The first samples will be made available to a small number of teams, including The Open University's Planetary and Space Science Research Institute (PSSRI), for preliminary analysis before their release to the wider scientific community.

The Open University (UK) team including Dr Simon Green, Dr Ian Franchi, Dr John Bridges and Prof Monica Grady will be among the world's first scientists to analyse the samples that contain the fundamental building blocks of our Solar System. Analysis may be able to determine not only the origins of the Solar System from these samples, but also possibly the origins of life.

"The tiny particles that the Stardust mission is bringing back are the most scientifically exciting and technically challenging material that we have ever had the opportunity to study", said Prof Grady. "Imagine trying to pick up a grain that is less than a hundredth of the size of the full stop at the end of this sentence. It is amazing to think that such minute specks of dust can carry within them so much information about the origin of stars and planets."

"Stardust could provide a new window into the distant past", said Dr Green. "Comets are made of ice and are very cold and have been very cold since they were formed. That protects the material of which they were made from any process of heating, so they haven't been changed since they were formed, right at the beginning of the formation of the Solar System. So we can have almost a little time capsule of what things were like 4.5 billion years ago. We can also learn about processes in stars and interstellar dust clouds in which the dust grains originally formed. They may also reveal information about the origins of life since comets are a source of organic material that may have formed the original building blocks of life-forming molecules."

Some facts:

The distance between Earth and Comet Wild 2 was 390 million kilometres (242 million miles) at the time of the encounter.

The spacecraft was protected from debris and rocks by a number of shields in order to guard its solar panels and body. In preparation for this journey the craft was pelted with rocks and debris travelling at six times the speed of a bullet.

The cometary particles were captured on a tennis racket like grid which contains a substance called aerogel - the lightest solid in the Universe! This is a porous material that allows the particles to become embedded with minimum damage. This means that on their return to Earth they will be as near as possible to their original state. Analysis of the sub-micron-sized particles will be a technical and instrumental challenge. The Open University has developed specialised handling and analytical procedures that will allow mineralogical and spectroscopic analysis of the precious material.

Once the samples are captured a clam like shell closes around them. The capsule then returns to Earth in January 2006 where it will land at the US Air Force Utah Test and Training Range, south west of Salt Lake City. Once collected, the samples will be taken to the planetary material curatorial facility at NASA's Johnson Space Centre, Houston, where they will be carefully stored and examined.

STARDUST, is part of NASA's Discovery Programme of low cost, highly focused science missions, was built by Lockheed Martin Astronautics and Operations, Denver, Colorado, and is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington D.C.

Source: PPARC

Explore further: ESO image: A study in scarlet

add to favorites email to friend print save as pdf

Related Stories

The moon is toxic

Jul 11, 2012

As our closest neighbor in space, a time-capsule of planetary evolution and the only world outside of Earth that humans have stepped foot on, the Moon is an obvious and ever-present location for future exploration ...

Evolving planets get a bumpy ride

Mar 06, 2012

The formation of planets occurs under constant bombardment from particles ranging from a few nanometres to tens of kilometres in size, according to recent analyses of asteroid samples by scientists at Okayama ...

Russia blames radiation for space probe failure

Jan 31, 2012

The head of Russia's space agency said Tuesday that cosmic radiation was the most likely cause of the failure of a Mars moon probe that crashed to Earth this month, and suggested that a low-quality imported ...

NASA studying ways to make 'tractor beams' a reality

Oct 31, 2011

Tractor beams -- the ability to trap and move objects using laser light -- are the stuff of science fiction, but a team of NASA scientists has won funding to study the concept for remotely capturing planetary ...

Micro-onions and magnetic ink

Aug 08, 2011

(PhysOrg.com) -- Microfluidic systems for the easy production of multiphasic emulsion drops and multishelled polymer capsules. Under a microscope they look like miniature onions, in fact, they are new microcapsules introduced ...

Recommended for you

ESO image: A study in scarlet

1 hour ago

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Astronomers: 'Tilt-a-worlds' could harbor life

16 hours ago

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

Vegetables on Mars within ten years?

22 hours ago

The soil on Mars may be suitable for cultivating food crops – this is the prognosis of a study by plant ecologist Wieger Wamelink of Wageningen UR. This would prove highly practical if we ever decide to ...

NASA Cassini images may reveal birth of a Saturn moon

22 hours ago

(Phys.org) —NASA's Cassini spacecraft has documented the formation of a small icy object within the rings of Saturn that may be a new moon, and may also provide clues to the formation of the planet's known ...

User comments : 0

More news stories

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Astronomers: 'Tilt-a-worlds' could harbor life

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

NASA Cassini images may reveal birth of a Saturn moon

(Phys.org) —NASA's Cassini spacecraft has documented the formation of a small icy object within the rings of Saturn that may be a new moon, and may also provide clues to the formation of the planet's known ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.