Biosensor sniffs out explosives

May 08, 2007
Biosensor sniffs out explosives
When the biosensor detects DNT, it lights up green. Credit: D. Dhanasekaran

Temple University School of Medicine researchers have developed a new biosensor that sniffs out explosives and could one day be used to detect landmines and deadly agents, such as sarin gas, according to a paper in the June issue of Nature Chemical Biology.

To create the biosensor, Danny Dhanasekaran and colleagues genetically engineered a yeast strain with mammalian (rat) olfactory signaling machinery and genetically linked it to the expression of green fluorescent protein. Into these yeast cells, they cloned individual rat olfactory receptors. When the olfactory receptor "smells" the odor of DNT, an ingredient in the explosive TNT, the biosensor turns fluorescent green. The research team is the first to identify, clone and sequence this novel olfactory receptor.

"We suspected that harnessing the potential of the olfactory system, which can detect innumerable chemical agents with unparalleled sensitivity and selectivity, would be of immense value in the detection of environmental toxins and chemical warfare agents even at sublethal levels," said Dhanasekaran, Associate Professor of Biochemistry at Temple’s Fels Institute for Cancer Research and Molecular Biology.

The research team is now perfecting the utility of the biosensor, for example, its response time, and believes that the potential therapeutic applications extend beyond the detection of chemical agents.

"With further genetic fine-tuning of the olfactory receptor pathway, this system could also be used to screen experimental medications, a crucial step in the development of new drugs," said Dhanasekaran.

Biosensors, which are made from natural ingredients, are preferable to man-made sensors, which can be expensive, cumbersome and inflexible. Dhanasekaran envisions that the biosensor will soon be incorporated into a handheld device or a remote device that can be left at a location and monitored from afar.

Source: Temple University

Explore further: Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals

add to favorites email to friend print save as pdf

Related Stories

Form Devices team designs Point as a house sitter

6 hours ago

A Scandinavian team "with an international outlook" and good eye for electronics, software and design aims to reach success with what they characterize as "a softer take" on home security. Their device is ...

Man pleads guilty in New York cybercrime case

9 hours ago

A California man has pleaded guilty in New York City for his role marketing malware that federal authorities say infected more than a half-million computers worldwide.

NASA issues 'remastered' view of Jupiter's moon Europa

17 hours ago

(Phys.org) —Scientists have produced a new version of what is perhaps NASA's best view of Jupiter's ice-covered moon, Europa. The mosaic of color images was obtained in the late 1990s by NASA's Galileo ...

Dish restores Turner channels to lineup

18 hours ago

Turner Broadcasting channels such as Cartoon Network and CNN are back on the Dish network after being dropped from the satellite TV provider's lineup during contract talks.

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.