Biosensor sniffs out explosives

May 08, 2007
Biosensor sniffs out explosives
When the biosensor detects DNT, it lights up green. Credit: D. Dhanasekaran

Temple University School of Medicine researchers have developed a new biosensor that sniffs out explosives and could one day be used to detect landmines and deadly agents, such as sarin gas, according to a paper in the June issue of Nature Chemical Biology.

To create the biosensor, Danny Dhanasekaran and colleagues genetically engineered a yeast strain with mammalian (rat) olfactory signaling machinery and genetically linked it to the expression of green fluorescent protein. Into these yeast cells, they cloned individual rat olfactory receptors. When the olfactory receptor "smells" the odor of DNT, an ingredient in the explosive TNT, the biosensor turns fluorescent green. The research team is the first to identify, clone and sequence this novel olfactory receptor.

"We suspected that harnessing the potential of the olfactory system, which can detect innumerable chemical agents with unparalleled sensitivity and selectivity, would be of immense value in the detection of environmental toxins and chemical warfare agents even at sublethal levels," said Dhanasekaran, Associate Professor of Biochemistry at Temple’s Fels Institute for Cancer Research and Molecular Biology.

The research team is now perfecting the utility of the biosensor, for example, its response time, and believes that the potential therapeutic applications extend beyond the detection of chemical agents.

"With further genetic fine-tuning of the olfactory receptor pathway, this system could also be used to screen experimental medications, a crucial step in the development of new drugs," said Dhanasekaran.

Biosensors, which are made from natural ingredients, are preferable to man-made sensors, which can be expensive, cumbersome and inflexible. Dhanasekaran envisions that the biosensor will soon be incorporated into a handheld device or a remote device that can be left at a location and monitored from afar.

Source: Temple University

Explore further: Better battery imaging paves way for renewable energy future

Related Stories

United States, China team explore energy harvesting

3 hours ago

Six authors have described their work in harvesting energy in a paper titled "Ultrathin, Rollable, Paper-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting and Self-Powered Sound Recording." ...

China's struggle for water security

4 hours ago

Way back in 1999, before he became China's prime minister, Wen Jiabao warned that water scarcity posed one of the greatest threats to the "survival of the nation".

Canada revises upward CO2 emission data since 1990

5 hours ago

Canada revised its greenhouse gas emission data from 1990 to 2013 in a report Friday, showing it had higher carbon dioxide discharges each year, and a doubling of emissions from its oil sands.

Recommended for you

Plausibility of the vibrational theory of smell

8 hours ago

The vibrational theory of olfaction explains several aspects of odorant detection that theories based purely on receptor binding do not. It provides for additional selectivity through receptors that are tuned ...

Electron transfer challenges common fluorescence technique

8 hours ago

Tryptophan is an amino acid, one of the building blocks of proteins. It is used extensively to study how proteins change their 3D structure, and also how they interact with other proteins and molecules. This is studied with ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.