Chandra sees brightest supernova ever

May 07, 2007
Chandra sees brightest supernova ever
According to observations by NASA's Chandra X-ray Observatory and ground-based optical telescopes, the supernova SN 2006gy is the brightest and most energetic stellar explosion ever recorded and may be a long-sought new type of explosion. Credit: Illustration: NASA/CXC/M.Weiss; X-ray: NASA/CXC/UC Berkeley/N.Smith et al.; IR: Lick/UC Berkeley/J.Bloom & C.Hansen

The brightest stellar explosion ever recorded may be a long-sought new type of supernova, according to observations by NASA's Chandra X-ray Observatory and ground-based optical telescopes. This discovery indicates that violent explosions of extremely massive stars were relatively common in the early universe, and that a similar explosion may be ready to go off in our own Galaxy.

"This was a truly monstrous explosion, a hundred times more energetic than a typical supernova," said Nathan Smith of the University of California at Berkeley, who led a team of astronomers from California and the University of Texas. "That means the star that exploded might have been as massive as a star can get, about 150 times that of our Sun. We've never seen that before."

Astronomers think many of the first generation of stars were this massive, and, therefore, this new supernova may provide a rare glimpse of how the first stars died. It is unprecedented, however, to find such a massive star and witness its death in the local Universe. The discovery of the supernova, known as SN 2006gy, provides evidence that the death of such massive stars is fundamentally different from theoretical predictions.

"Of all exploding stars ever observed, this was the king," said Alex Filippenko, leader of the ground-based observations at the Lick Observatory in California and the Keck Observatory in Hawaii. "We were astonished to see how bright it got, and how long it lasted."

The Chandra observation allowed the team to rule out the most likely alternative explanation for the supernova, namely that it was an explosion of a white dwarf star with a mass only slightly higher than the Sun into a dense, hydrogen-rich environment. In that event, SN 2006gy should have been 1,000 times brighter in X-rays than what Chandra detected.

"This provides strong evidence that SN 2006gy was, in fact, the death of an extremely massive star," said Dave Pooley of U.C. Berkeley who led the Chandra observations.

The star that produced SN 2006gy apparently expelled a large amount of mass prior to exploding. This eruption is similar to one seen from Eta Carinae, a massive star in our Galaxy, raising suspicion that Eta Carinae may be poised to explode as a supernova. Although SN 2006gy is intrinsically the brightest supernova ever, it is in the galaxy NGC 1260 some 240 million light years away. However, Eta Carinae is only about 7500 light years away in our own Milky Way galaxy.

"We don't know for sure if Eta Carinae will explode soon, but we had better keep a close eye on it just in case," said Mario Livio of the Space Telescope Science Institute in Baltimore, who was not involved in the research. "Eta Carinae's explosion could be the best star-show in the history of modern civilization."

Supernovas usually occur when massive stars exhaust their fuel and collapse under their own gravity. In this case of SN 2006gy, astronomers think that a very different effect may have triggered the explosion. Under some conditions, the core of a massive star produces so much gamma-ray light that some of the energy from the radiation is converted into particle and anti-particle pairs. The resulting drop in energy causes the star to collapse under its own huge gravity.

After this violent collapse, runaway thermonuclear reactions ensue and the star explodes, spewing the remains into space. The SN 2006gy data suggest that spectacular supernovas from the first stars -- rather than complete collapse to a black hole -- may be more common than previously believed.

"In terms of the effect on the early Universe, there's a huge difference between these two possibilities," said Smith. "One pollutes the galaxy with large quantities of newly made elements and the other locks them up forever in a black hole."

Source: Chandra X-ray Center

Explore further: Aboriginal legends an untapped record of natural history written in the stars

add to favorites email to friend print save as pdf

Related Stories

Stars akin to the Sun also explode when they die

Feb 16, 2015

The birth of planetary nebulae, resulting from the death of low and intermediate mass stars, is usually thought of as a slow process, in contrast with the intense supernovae that massive stars produce. But ...

Exploded star blooms like a cosmic flower

Feb 12, 2015

Because the debris fields of exploded stars, known as supernova remnants, are very hot, energetic, and glow brightly in X-ray light, NASA's Chandra X-ray Observatory has proven to be a valuable tool in studying ...

Small-scale challenges to the cold dark matter model

Feb 11, 2015

(Phys.org)—A collaborative of researchers from several U.S. universities has published a new paper that explains the major contradictions presented by the prevailing cold dark matter (CDM) cosmological ...

Stellar partnership doomed to end in catastrophe

Feb 09, 2015

Astronomers using ESO facilities in combination with telescopes in the Canary Islands have identified two surprisingly massive stars at the heart of the planetary nebula Henize 2-428. As they orbit each other ...

What is a Wolf-Rayet star?

Feb 06, 2015

Wolf-Rayet stars represent a final burst of activity before a huge star begins to die. These stars, which are at least 20 times more massive than the Sun, "live fast and die hard", according to NASA.

Recommended for you

Far from home: Wayward cluster is both tiny and distant

5 hours ago

Like the lost little puppy that wanders too far from home, astronomers have found an unusually small and distant group of stars that seems oddly out of place. The cluster, made of only a handful of stars, ...

An old-looking galaxy in a young universe

Mar 02, 2015

A team of astronomers, led by Darach Watson, from the University of Copenhagen used the Very Large Telescope's X-shooter instrument along with the Atacama Large Millimeter/submillimeter Array (ALMA) to observe ...

Giant methane storms on Uranus

Mar 02, 2015

Most of the times we have looked at Uranus, it has seemed to be a relatively calm place. Well, yes its atmosphere is the coldest place in the solar system. But, when we picture the seventh planet in our ...

Where do stars form in merging galaxies?

Mar 02, 2015

Collisions between galaxies, and even less dramatic gravitational encounters between them, are recognized as triggering star formation. Observations of luminous galaxies, powered by starbursts, are consistent ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.