Light oscillations become visible

Aug 28, 2004

The human eye can detect changes in the intensity of light, not however the wavelength because light oscillates too fast (approximately 1000 trillion times per second). An international collaboration led by Ferenc Krausz and made up of researchers from the Vienna University of Technology, the Max-Planck-Institute for Quantum Optics and the University of Bielefeld have recently succeeded in developing a technique which can measure the instantaneous electric field of red light (quarter period ~ 620 attoseconds) and record its variation with a resolution of 100 attoseconds (Science, August 27, 2004). The experiment of the Austrian-German team allowed the first direct visualization of the electric field of visible light and constitutes the fastest measurement to date.

It has been known since the famous experiments of Heinrich Hertz near the end of the 19th century that light is a wave consisting of electric and magnetic fields, just as radio waves and microwaves. The only difference is in the number of times these fields change their direction in a second. In radio and microwaves this happens typically millions to trillions times per second. The field variation in these waves can be readily detected by turning it into electric current and displaying the variation of this current in electronic instruments called oscilloscopes.

Light oscillations become visible


Fig. 1: Energy shift (in units of eV) suffered by an attosecond electron probe set free at different instants (measured in units of fs) in an intense wave consisting of only a few cycles of red light.


In striking contrast, the electromagnetic field of visible light changes direction approx. one thousand trillion, i.e. 1 000 000 000 000 000, times per second, so that the instantaneous intensity of the light field varies from zero to maximum faster than a femtosecond (1 femtosecond being one thousandth of a trillionth of a second), some ten thousand times more rapidly than the resolution of the fastest electronic instruments available to date. Recording the field variation of visible light calls for an oscilloscope that exhibits a temporal resolution of several hundred attoseconds (1 attosecond being a thousandth of a femtosecond). The researchers recently succeeded in developing a technique which can measure the instantaneous electric field of red light (quarter period ~ 620 attoseconds) and record its variation with a resolution of 100 attoseconds.

The key to this measurement was the generation of single 250-attosecond extreme ultraviolet pulses, a feat achieved by the same collaboration a few months ago (Nature, February 26, 2004). The attosecond extreme ultraviolet pulse knocks electrons free from atoms to probe the electric field of a wave consisting of only a few cycles of red laser light. The electric field of red light accelerated or decelerated the electrons set free with respect to the light wave with a 100-attosecond timing precision. The change in the electrons’ energy (shown in units of electron volts, eV, in Fig. 1), measured as a function of delay (shown in units of femtoseconds, fs, in Fig. 1) between the attosecond pulse and the laser light wave clearly exhibits the build-up and disappearance of the laser pulse within a few femtoseconds as well as oscillations with a period of the 2.5-fs wave cycle of 750-nm (red) light. The measured energy change directly yields the variation of the instantaneous strength and direction of the electric field of the few-cycle light wave (Fig. 2).

fig2


Fig. 2: Build-up and disappearance of the electric field in the 4.3-fs pulse of red light (wavelength ~ 750nm), as recorded by the attosecond oscilloscope.


The red line in Fig. 2 depicts the electric field of a few-femtosecond flash of red light, as recorded by an apparatus that can be regarded as the first attosecond oscilloscope. The new technique permits direct and accurate measurement of ultrabroad-band light pulses (made up of many different colours), and thereby opens the door to the reproducible synthesis of ultrashort flashes of light with arbitrary waveform for a number of applications including the development of molecular electronics and X-ray lasers.

Source: Max-Planck-Institute of Quantum Optics

Explore further: Сalculations with nanoscale smart particles

add to favorites email to friend print save as pdf

Related Stories

3-D microscope method to look inside brains

Aug 14, 2014

(Phys.org) —A University of Utah team discovered a method for turning a small, $40 needle into a 3-D microscope capable of taking images up to 70 times smaller than the width of a human hair. This new method ...

Molecular engineers record an electron's quantum behavior

Aug 14, 2014

A team of researchers led by the University of Chicago has developed a technique to record the quantum mechanical behavior of an individual electron contained within a nanoscale defect in diamond. Their technique ...

Recommended for you

Relaxing DNA strands by using nano-channels

20 hours ago

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

Bacterial nanowires: Not what we thought they were

Aug 18, 2014

For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety ...

User comments : 0