Astronomers shed surprising light on our galaxy's black hole

Jan 10, 2006

In the most comprehensive study of Sagittarius A* (Sgr A*), the enigmatic supermassive black hole in the center of the Milky Way Galaxy, astronomers -- using nine ground and space-based telescopes including the Hubble Space Telescope and the XMM-Newton X-ray Observatory -- have discovered that Sgr A* produces rapid flares close to the innermost region of the black hole in many different wavelengths and that these emissions go up and down together.

This insight into the frequent bursts of radiation observed shooting off the black hole like firecrackers -- similar to solar flares -- will help scientists better understand the dynamics of Sgr A* and the source of its flares.

Farhad Yusef-Zadeh, professor of physics and astronomy at Northwestern University, who led a team of 11 astronomers from around the world in the study of Sgr A*, presented the team's results at a press conference today (Jan. 10) at the American Astronomical Society meeting in Washington, D.C.

"We observed that the less energetic infrared flares occur simultaneously with the more energetic X-ray flares as well the submillimeter flares," said Yusef-Zadeh. "From this, we infer that the particles that are accelerated near the black hole give rise to X-ray, infrared and submillimeter emission. In addition, not all of the material that approaches the black hole gets sucked in. Some of the material may be ejected from the vicinity of the central black hole or event horizon. Our observations hint that these flares have enough energy to escape from the closest confines of the supermassive black hole's sphere of influence."

Yusef-Zadeh and his team observed Sgr A* during two four-day periods in 2004, one in March and one in September. (2004 marked the 30th anniversary of the discovery of Sgr A*, which has a mass equivalent to 3.6 million Suns and is located in the Sagittarius constellation.) The campaign captured data across a wide spectrum, including radio, millimeter, submillimeter, infrared, X-ray and soft gamma ray wavelengths.

The astronomers also determined that the real engine of the flare activity is in the infrared wavelength. Using observations from Hubble's Near-Infrared Camera and Multi-Object Spectrometer, they found infrared activity 40 percent of the time, more than was observed at any other wavelength.

"This is not something we expected," said Yusef-Zadeh. "Other black holes in other galaxies don't show this flare activity. We believe it is the dynamics of the captured material -- very close to the event horizon of the black hole -- that produces the flares. And the flares are fluctuating at low levels, like flickers. The flare radiation results from fast-moving materials in the innermost region of the black hole. It's a way of life for Sgr A*, this frequent low level of activity."

Because flares are variable and not constant, the study required a large number of telescopes devoted to studying flare activity simultaneously. The space-based telescopes used in this observation campaign were the Hubble Space Telescope, the XMM-Newton X-ray Observatory and the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The ground telescopes used were Very Large Array (VLA) of the National Radio Astronomy Observatory; Caltech Submillimeter Observatory (CSO); Submillimeter Telescope (SMT); Nobeyama Array (NMA); Berkeley Illinois Maryland Array (BIMA); and Australian Telescope Compact Array (ATCA).

Source: Northwestern University

Explore further: Heavy metal frost? A new look at a Venusian mystery

add to favorites email to friend print save as pdf

Related Stories

MasterCard, Zwipe announce fingerprint-sensor card

8 hours ago

On Friday, MasterCard and Oslo, Norway-based Zwipe announced the launch of a contactless payment card featuring an integrated fingerprint sensor. Say goodbye to PINs. This card, they said, is the world's ...

Plastic nanoparticles also harm freshwater organisms

9 hours ago

Organisms can be negatively affected by plastic nanoparticles, not just in the seas and oceans but in freshwater bodies too. These particles slow the growth of algae, cause deformities in water fleas and impede communication ...

Atomic trigger shatters mystery of how glass deforms

9 hours ago

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

US company sells out of Ebola toys

18 hours ago

They might look tasteless, but satisfied customers dub them cute and adorable. Ebola-themed toys have proved such a hit that one US-based company has sold out.

Recommended for you

Heavy metal frost? A new look at a Venusian mystery

15 hours ago

Venus is hiding something beneath its brilliant shroud of clouds: a first order mystery about the planet that researchers may be a little closer to solving because of a new re-analysis of twenty-year-old ...

Exomoons Could Be Abundant Sources Of Habitability

18 hours ago

With about 4,000 planet candidates from the Kepler Space Telescope data to analyze so far, astronomers are busy trying to figure out questions about habitability. What size planet could host life? How far ...

Hot explosions on the cool sun

21 hours ago

(Phys.org) —The Sun is more spirited than previously thought. Apart from the solar eruptions, huge bursts of particles and radiation from the outer atmosphere of our star, also the cooler layer right below ...

User comments : 0