Astronomer finds that Mercury has molten core

May 03, 2007
Astronomer finds that Mercury has molten core
Jean-Luc Margot, assistant professor of astronomy at Cornell University, uses a raw egg (right, still) and a cooked egg (left, spinning) to illustrate how an object's spin state can reveal information about its interior. Credit: Lindsay France/Cornell University Photography

Chefs have long used a simple trick to differentiate between a raw and hard-boiled egg. By spinning an egg and watching how it behaves when the spin is disrupted, it's easy to tell whether its interior is solid or liquid.

Applying a similar test to the planet Mercury, astronomers have found strong evidence that the planet closest to the sun has a fluid core. The research, led by Jean-Luc Margot, assistant professor of astronomy at Cornell, appears this week on the Web site of the journal Science.

Margot and collaborators conducted a series of observations over five years using a novel technique to detect tiny twists in Mercury's spin as it orbits the sun. The twists, called longitudinal librations, occur as the sun's gravity exerts alternating torques on the planet's slightly asymmetrical shape.

They found that the magnitude of the librations was double what would be expected for a completely solid body -- but explainable for an object whose core is molten and not forced to rotate along with its shell.

Mercury is thought to consist of a silicate mantle surrounding an iron core, but because small planets like Mercury cool off rapidly, the core should have frozen long ago. Maintaining a molten core over billions of years requires that it also contain a lighter element, such as sulfur, to lower the melting temperature of the core material. The presence of sulfur supports the idea that radial mixing, or the combining of elements both close to the sun and farther away, was involved in Mercury's formation process.

A molten core also gives weight to the idea that Mercury's magnetic field, which is about 1 percent as strong as Earth's, is caused by an electromagnetic dynamo.

The researchers used three telescopes -- the NASA/JPL 70-meter antenna at Goldstone, Calif.; and the National Science Foundation's Arecibo Observatory in Puerto Rico and Robert C. Byrd Green Bank Telescope in West Virginia -- to measure slight changes in Mercury's spin. The system involved sending a powerful radar signal at the planet, then receiving the signal's echo, which appeared as a unique pattern of speckles reflecting the roughness of the planet's surface, at two locations separated by about 2,000 miles.

Measuring how long it took for a particular speckle pattern to reproduce at the two locations (about 10 seconds) allowed Margot to calculate Mercury's spin rate with an accuracy of one part in 100,000.

The experiment included 21 such measurements, very carefully timed since Mercury and Earth are only in the necessary alignment for periods of 20 seconds at a time. "Everything has to happen within that 20-second time window," Margot said.

Mercury's spin is a subject the paper's second author, University of California-Santa Barbara physics professor emeritus Stan Peale, first studied as a graduate student at Cornell decades ago.

In the years since, Peale showed that Mercury's interior could be characterized in detail if four properties could be determined: the libration amplitude; the planet's obliquity, or the inclination angle of its rotational axis in relation to its orbital plane; and two values called gravitational harmonic coefficients. Peale's formula also required that Mercury be in a Cassini state, a stable orbital configuration that characterizes the end of tidal evolution.

Finding those properties from Earth was long thought to be impossible. But this unusual radar technique (the method was first proposed to determine the spin rate in the 1960s; its use for finding the spin orientation was proposed by co-author I.V. Holin about two decades later) allowed the researchers to measure the planet's librations and obliquity -- and to show that Mercury is almost certainly in the required Cassini state.

Mercury still has its share of mysteries. Some may be solved with the NASA spacecraft Messenger, though, launched in 2004 and expected to make its first Mercury flyby in 2008. The spacecraft will begin orbiting the planet in 2011.

"It is our hope that Messenger will address the remaining questions that we cannot address from the ground," Margot said.

Source: Cornell University

Explore further: Unique pair of supermassive black holes in an ordinary galaxy discovered

add to favorites email to friend print save as pdf

Related Stories

Explosive volcanoes light up Mercury's deep past

Jan 31, 2014

Mercury has long been a mystery to scientists. Until recently, knowledge of the planet was limited to the grey, patchy landscape revealed by the Mariner 10 probe, NASA's first mission to Mercury in the mid-1970s. ...

Convenience of technology comes at a cost

Nov 29, 2013

As he rose to his feet from a knuckle-dragging crouch, primitive cave man wrapped his newly evolved opposable thumbs around the handy tools of his time - a club or spear - and instantly his life got easier. Two million years ...

An explanation of the rotational state of Mercury

Oct 11, 2013

Planetary scientists announced a new explanation of the current rotational state of the planet Mercury. The report was presented by Dr. Benoit Noyelles of the University of Namur, Belgium, to the meeting of ...

Recommended for you

A star's early chemistry shapes life-friendly atmospheres

12 hours ago

Born in a disc of gas and rubble, planets eventually come together as larger and larger pieces of dust and rock stick together. They may be hundreds of light-years away from us, but astronomers can nevertheless ...

Image: X-raying the cosmos

Apr 22, 2014

When we gaze up at the night sky, we are only seeing part of the story. Unfortunately, some of the most powerful and energetic events in the Universe are invisible to our eyes – and to even the best optical ...

Mysteries of nearby planetary system's dynamics solved

Apr 22, 2014

Mysteries of one of the most fascinating nearby planetary systems now have been solved, report authors of a scientific paper to be published by the journal Monthly Notices of the Royal Astronomical Society in its ...

User comments : 0

More news stories

First-of-its-kind NASA space-weather project

A NASA scientist is launching a one-to-two-year pilot project this summer that takes advantage of U.S. high-voltage power transmission lines to measure a phenomenon that has caused widespread power outages ...

How many moons does Venus have?

There are dozens upon dozens of moons in the Solar System, ranging from airless worlds like Earth's Moon to those with an atmosphere (most notably, Saturn's Titan). Jupiter and Saturn have many moons each, ...