Solar breakthrough could lead to cheaper power

May 02, 2007

Solar energy could become more affordable following a breakthrough by Australian scientists, who have boosted the efficiency of solar cell technology.

The advance could see the price of an installed solar system for an average house fall from around AUD$20,000 to $15,000. Up to 45 percent of the cost of solar cell technology is due to the high cost of the silicon used to convert sunlight to electricity.

Silicon is the material of choice in the electronics industry because of its stability, non-toxicity and ubiquity. However, silicon is a poor absorber of light. In a bid to drive down costs, scientists have moved from using expensive thick silicon "wafers" to cheaper "thin film" cells, containing less silicon.

The disadvantage of these one-to-two micron-thick films is that they convert only eight to 10 percent of incoming sunlight into electricity, compared to the 25 percent efficiency of thicker, more expensive, silicon wafers. Scientists around the world are testing new ways to boost the efficiency of thin film technology, while keeping down costs.

Now, researchers at the University of New South Wales' ARC Photovoltaics Centre of Excellence, led by PhD student Supriya Pillai have reported a 16-fold enhancement in light absorption in 1.25-micron thin-film cells for light with a wavelength of 1050 nm. They have also reported a seven-fold enhancement in light absorption in the more expensive wafer type cells light wavelengths of 1200 nm.

"Most thin-film solar cells are between eight and 10 percent efficient," says Dr Kylie Catchpole, a co-author of the study, "but the new technique could increase efficiency to between 13 and 15 percent."

That's an important advance, she says: "If they're below 10 percent efficient, then you can't really afford to install them, because it would take up too much of your roof area, for example, to power your house." Once the technology approaches 15 per cent efficiency, it becomes commercially viable.

An average house could have its daily power supplied by installing a solar system and panels covering 10 square metres. This system would exclude power for cooking and hot water heating.

The breakthrough, which is reported in the upcoming issue of the Journal of Applied Physics, could eventually see a dramatic rise in solar power’s share of the electricity market. Currently only 30,000 Australian households - out of 8 million - have installed solar panels.

The UNSW researchers have devised a way to deposit a thin film of silver (about 10 nanometres thick) onto a solar cell surface and then heat it to 200° Celsius. This breaks the film into tiny 100-nanometre "islands" of silver that boost the cell’s light trapping ability, thereby boosting its efficiency.

Source: University of New South Wales

Explore further: 'Pixel' engineered electronics have growth potential

add to favorites email to friend print save as pdf

Related Stories

Organic tin in polymers increases their light absorption

Sep 26, 2014

Researchers of the Christian-Albrechts-University of Kiel (CAU), Germany, successfully integrated organic tin into semiconducting polymers (plastics) for the first time. Semiconducting polymers can be used, ...

New solar cells serve free lunch

Sep 24, 2014

One of the most common complaints about solar power is solar panels are still too expensive to be worth the investment. Many researchers have responded by making solar cells, the tile-like components of solar ...

Soft design for a sustainable world

Sep 24, 2014

"Around the world at unprecedented rates, people are moving from the country to the city," says Sheila Kennedy, professor of the practice at MIT's Department of Architecture. "But this rapid urbanization is not a one-way ...

Recommended for you

'Pixel' engineered electronics have growth potential

Sep 29, 2014

(Phys.org) —A little change in temperature makes a big difference for growing a new generation of hybrid atomic-layer structures, according to scientists at Rice University, Oak Ridge National Laboratory, ...

2-D materials' crystalline defects key to new properties

Sep 24, 2014

Understanding how atoms "glide" and "climb" on the surface of 2D crystals like tungsten disulphide may pave the way for researchers to develop materials with unusual or unique characteristics, according to an international ...

User comments : 0