Arctic ice retreating more quickly than computer models project

Apr 30, 2007
Arctic Sea Ice Illustration
This figure illustrates the extent to which Arctic sea ice is melting faster than projected by computer models. The dotted line represents the average rate of melting indicated by computer models, with the blue area indicating the spread among the different models (shown as plus/minus one standard deviation). The red line shows the actual rate of Arctic ice loss based on observations. The observations have been particularly accurate since 1979 because of new satellite technology. Credit: Steve Deyo, UCAR

Arctic sea ice is melting at a significantly faster rate than projected by even the most advanced computer models, a new study concludes. The research, by scientists at the National Center for Atmospheric Research (NCAR) and the University of Colorado's National Snow and Ice Data Center (NSIDC), shows that the Arctic's ice cover is retreating more rapidly than estimated by any of the 18 computer models used by the Intergovernmental Panel on Climate Change in preparing its 2007 assessments.

The study, "Arctic Sea Ice Decline: Faster Than Forecast?" will appear tomorrow in the online edition of Geophysical Research Letters. It was led by Julienne Stroeve of the NSIDC and funded by the National Science Foundation, which is NCAR's principal sponsor, and by NASA.

"While the ice is disappearing faster than the computer models indicate, both observations and the models point in the same direction: the Arctic is losing ice at an increasingly rapid pace and the impact of greenhouse gases is growing," says NCAR scientist Marika Holland, one of the study’s co-authors.

The authors compared model simulations of past climate with observations by satellites and other instruments. They found that, on average, the models simulated a loss in September ice cover of 2.5 percent per decade from 1953 to 2006. The fastest rate of September retreat in any individual model was 5.4 percent per decade. (September marks the yearly minimum of sea ice in the Arctic.) But newly available data sets, blending early aircraft and ship reports with more recent satellite measurements that are considered more reliable than the earlier records, show that the September ice actually declined at a rate of about 7.8 percent per decade during the 1953-2006 period.

"This suggests that current model projections may in fact provide a conservative estimate of future Arctic change, and that the summer Arctic sea ice may disappear considerably earlier than IPCC projections," says Stroeve.

Thirty years ahead of schedule

The study indicates that, because of the disparity between the computer models and actual observations, the shrinking of summertime ice is about 30 years ahead of the climate model projections. As a result, the Arctic could be seasonally free of sea ice earlier than the IPCC- projected timeframe of any time from 2050 to well beyond 2100.

The authors speculate that the computer models may fail to capture the full impact of increased carbon dioxide and other greenhouse gases in the atmosphere. Whereas the models indicate that about half of the ice loss from 1979 to 2006 was due to increased greenhouse gases, and the other half due to natural variations in the climate system, the new study indicates that greenhouse gases may be playing a significantly greater role.

There are a number of factors that may lead to the low rates of simulated sea ice loss. Several models overestimate the thickness of the present-day sea ice and the models may also fail to fully capture changes in atmospheric and oceanic circulation that transport heat to polar regions.

March ice

Although the loss of ice for March is far less dramatic than the September loss, the models underestimate it by a wide margin as well. The study concludes that the actual rate of sea ice loss in March, which averaged about 1.8 percent per decade in the 1953-2006 period, was three times larger than the mean from the computer models. March is typically the month when Arctic sea ice is at its most extensive.

The Arctic is especially sensitive to climate change partly because regions of sea ice, which reflect sunlight back into space and provide a cooling impact, are disappearing. In contrast, darker areas of open water, which are expanding, absorb sunlight and increase temperatures. This feedback loop has played a role in the increasingly rapid loss of ice in recent years, which accelerated to 9.1 percent per decade from 1979 to 2006 according to satellite observations.

Source: National Center for Atmospheric Research

Explore further: Magnitude-7.2 earthquake shakes Mexican capital

add to favorites email to friend print save as pdf

Related Stories

The importance of plumes

Apr 18, 2014

The Hubble Space Telescope is famous for finding black holes. It can pick out thousands of galaxies in a patch of sky the size of a thumbprint. The most powerful space telescope ever built, the Hubble provided ...

Ice breaker: ONR researchers explore a changing Arctic

Apr 14, 2014

As sea ice continues to recede at a record pace in the Arctic, officials at the Office of Naval Research (ONR) announced April 14 new efforts to determine the pace of change in what some are calling Earth's final frontier.

Researchers decipher climate paradox from the Miocene

Apr 11, 2014

Scientists of the German Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), have deciphered a supposed climate paradox from the Miocene era by means of complex model simulations. ...

The Atlantic Ocean dances with the sun and volcanoes

Mar 31, 2014

Natural fluctuations in the ocean temperature in the North Atlantic have a significant impact on the climate in the northern hemisphere. These fluctuations are the result of a complex dance between the forces ...

Recommended for you

Magnitude-7.2 earthquake shakes Mexican capital

Apr 18, 2014

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

User comments : 0

More news stories

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

European climate at the +2 C global warming threshold

A global warming of 2 C relative to pre-industrial climate has been considered as a threshold which society should endeavor to remain below, in order to limit the dangerous effects of anthropogenic climate change.

Atom probe assisted dating of oldest piece of earth

(Phys.org) —It's a scientific axiom: big claims require extra-solid evidence. So there were skeptics in 2001 when University of Wisconsin-Madison geoscience professor John Valley dated an ancient crystal ...