When smell cells fail they call in stem cell reserves

Apr 29, 2007

Hopkins researchers have identified a backup supply of stem cells that can repair the most severe damage to the nerves responsible for our sense of smell. These reservists normally lie around and do nothing, but when neighboring cells die, the scientists say, the stem cells jump into action. A report on the discovery will appear online next week in Nature Neuroscience.

“These stem cells act like the Army Reserves of our nose,” explains lead author Randall Reed, Ph.D., a professor of neuroscience at Johns Hopkins, “supporting a class of active-duty stem cells that help repair normal wear and tear. They don’t come in until things are really bad.”

The only nerve cells in the body to run directly from the brain to the outside world, olfactory cells are under constant assault from harsh chemicals that one might happen to catch a whiff of by accident, risking damage or death.

To figure out how the olfactory system repairs severely damaged nerve cells, Reed’s team exposed mouse olfactory nerves to a cloud of toxic methyl-bromide gas. Methyl bromide kills not only olfactory nerve cells but also neighboring, non-nerve cells in the nasal passage. Three weeks after chemical exposure, the researchers examined nasal cells to see which, if any, had grown back.

They discovered that the newly grown cells, both nerve and non-nerve, grew from HBCs-a population of cells not previously known for repair abilities. “We were stunned because HBCs normally don’t grow much or do anything,” says Reed. “And the most surprising thing is that HBCs can grow into both nerves and non-nerve cells; they do so by generating the other active type of nasal stem cell.”

The team then went back and looked at nerve repair under less damaging circumstances where only the olfactory nerve cells are killed. In this situation, the HBCs did nothing to repair the damaged cells; rather, they allowed the previously known stem cells to do all the repair work.

“The ability to smell is crucial for eating, mating and survival, and it’s important that the olfactory system be fully operational all the time,” explains Reed. “The HBCs act as a fail-safe to ensure continued function of the sense of smell.”

The discovery of these two distinct types of stem cells in one neural tissue is a first, says Reed, who is interested to see if other types of nerves in the body have similar repair mechanisms in play.

Source: Johns Hopkins Medical Institutions

Explore further: Infant cooing, babbling linked to hearing ability

add to favorites email to friend print save as pdf

Related Stories

Stem cells use 'first aid kits' to repair damage

Sep 18, 2014

Stem cells hold great promise as a means of repairing cells in conditions such as multiple sclerosis, stroke or injuries of the spinal cord because they have the ability to develop into almost any cell type. ...

How to tell good stem cells from the bad

Sep 05, 2014

The promise of embryonic stem cell research has been thwarted by an inability to answer a simple question: How do you know a good stem cell from a bad one?

New protagonist in cell reprogramming discovered

Sep 04, 2014

A group of researchers from the Centre for Genomic Regulation in Barcelona have described the role of a protein that is crucial for cell reprogramming. The discovery also details the dynamics of this protein as well as its ...

Tissue regeneration using anti-inflammatory nanomolecules

Aug 22, 2014

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness. These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological ...

Recommended for you

Infant cooing, babbling linked to hearing ability

7 hours ago

Infants' vocalizations throughout the first year follow a set of predictable steps from crying and cooing to forming syllables and first words. However, previous research had not addressed how the amount ...

Developing 'tissue chip' to screen neurological toxins

8 hours ago

A multidisciplinary team at the University of Wisconsin-Madison and the Morgridge Institute for Research is creating a faster, more affordable way to screen for neural toxins, helping flag chemicals that ...

Gene mutation discovered in blood disorder

12 hours ago

An international team of scientists has identified a gene mutation that causes aplastic anemia, a serious blood disorder in which the bone marrow fails to produce normal amounts of blood cells. Studying a family in which ...

Airway muscle-on-a-chip mimics asthma

14 hours ago

The majority of drugs used to treat asthma today are the same ones that were used 50 years ago. New drugs are urgently needed to treat this chronic respiratory disease, which causes nearly 25 million people ...

User comments : 0