New animal study may explain why alcohol consumption increases breast cancer risk

Apr 29, 2007

For the first time, scientists have used a laboratory mouse model to mimic the development of human alcohol-induced breast cancer.

The results are part of a new study, Chronic Alcohol Consumption Increases Tumor Growth and Amgiogenesis of Breast Cancer in Female Mice, conducted by Brandi Busby, Wei Tan, Jordan Covington, Emily Young, and Jian-Wei Gu, all of the University of Mississippi Medical Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS. Dr. Gu will present the team's findings in detail during the American Physiological Society annual meeting, which is being held as part of the Experimental Biology meeting.

Alcohol (EtOH) consumption -- even moderate -- is a well-established risk factor for breast cancer in women. A recent study showed that 60 percent of female breast cancers worldwide were attributable to alcohol consumption. Nevertheless, the mechanisms of alcohol-induced breast cancer are poorly understood.

The definitive biological effects and molecular mechanisms of EtOH on progression and malignancy of breast cancer have not been investigated using a mammalian breast cancer model that mimics the human disease. Scientists have suggested that the possible mechanisms involved include the agitation of estrogen metabolism and response; cell mutation by the EtOH metabolite acetaldehyde; oxidative damage; and one-carbon metabolism pathways through reduced folic acid.

To date, there has not been an animal model that faithfully mimics the human disease with respect to characteristics of breast cancer, immunocompetence, and physiologically relevant EtOH intake. The researchers addressed and overcame the obstacles and developed a novel mouse breast cancer model. The model mimics human breast cancer disease in which the estrogen receptor-positive breast adenocarcinoma cells were subcutaneously injected near the pad of the fourth mammary gland of female immunocompetant mice (C57BL/6). The six-week-old female mice were fed with moderate EtOH (one percent in drinking water) for four weeks, the equivalent of two drinks per day in humans. The control mice received regular drinking water only.

In the second week of the experiment, mouse breast cancer cells (5x105 E0771) were injected at cite referenced above. At the end of the experiment, the tumors were isolated to measure tumor size, examine intratumoral microvessel (IM) density via CD 31 immunohistochemistry staining, and assessing VEGF protein levels via ELISA. These steps were taken to determine the effects of EtOH intake in physiologically relevant doses on tumor growth and angiogenesis in mouse breast cancer.

The researchers found:

-- that moderate alcohol consumption significantly increased the tumor size of breast cancer in mice, which was a 1.96-fold increase in tumor weight vs. control mice;

-- that alcohol intake caused a 1.28-fold increase in tumor microvessel density vs. the control group;

-- a significant increase in tissue protein levels of VEGF were found in the tumors of the mice treated with EtOH vs. control group;

-- EtOH intake did not cause significant changes in the body weight of the mice.

This study presents the first animal model to confirm that alcohol consumption stimulates tumor growth and malignancy of breast cancer, and reveals some of the mechanisms of alcohol-induced breast cancer. The findings demonstrate that even moderate alcohol consumption significantly stimulates tumor growth of breast cancer and that induction of tumor angiogenesis and VEGF expressions are mechanisms which are associated with the progression of this deadly disease.

Source: American Physiological Society

Explore further: Black men less willing to be investigated for prostate cancer

add to favorites email to friend print save as pdf

Related Stories

3-D printers to make human body parts? It's happening

Feb 04, 2015

It sounds like something from a science fiction plot: So-called three-dimensional printers are being used to fashion prosthetic arms and hands, jaw bones, spinal-cord implants - and one day perhaps even living human body ...

Twist1: Complex regulator of cell shape and function

Jan 20, 2015

Transcription factor Twist1 is involved in many processes where cells change shape or function. Thereby, Twist1 is crucial for embryonic development, but has also been implicated in cancer progression. However, the precise ...

World's oldest penguin undergoes cancer radiation

Dec 12, 2014

A toddler on Tuesday peered through thick glass as Tess – the world's oldest African penguin, representing an endangered species set to vanish in the child's lifetime – dove into her pool at the Pueblo Zoo. It was the ...

Recommended for you

US women's awareness of breast density varies

8 hours ago

Disparities in the level of awareness and knowledge of breast density exist among U.S. women, according to the results of a Mayo Clinic study published in the Journal of Clinical Oncology.

Study shows why some brain cancers resist treatment

8 hours ago

Scientists at The University of Texas MD Anderson Cancer Center may have discovered why some brain cancer patients develop resistance to standard treatments including radiation and the chemotherapy agent temozolomide.

Researchers identify genes responsible for lung tumors

10 hours ago

The lung transcription factor Nkx2-1 is an important gene regulating lung formation and normal respiratory functions after birth. Alterations in the expression of this transcription factor can lead to diseases such as lung ...

Lycopene may ward off kidney cancer in older women

11 hours ago

A higher intake by postmenopausal women of the natural antioxidant lycopene, found in foods like tomatoes, watermelon and papaya, may lower the risk of renal cell carcinoma, a type of kidney cancer.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.