Chemical Bonding States at Silicon / Silicon Dioxide Interfaces Characterisable with Light

Aug 27, 2004

The importance of characterising the atomic structure of the silicon / silicon dioxide interface as an essential component in highly integrated circuits has steadily increased as a result of continuing miniaturisation of silicon chips. The physicists, Dr. Stefan Bergfeld, Bjoern Braunschweig and Prof. Dr. Winfried Daum, Institute of Physics and Physical Technologies at the Technical University of Clausthal, have succeeded in characterising the change in bond structure of interfacial atoms during the oxidation of a silicon surface by a purely optical method. The results of the research have been published in the scientific journal, Physical Review Letters, Volume 93, No. 9 (online on 27th August 2004).

In the present work, the atmospheric oxidation of a hydrogen-covered (111)-oriented silicon surface has been studied, and special bonding states of the silicon atoms have been identified. The scientists also observed these bonding states after the technically relevant thermal oxidation. For characterising the interfaces, the physicists apply a special nonlinear-optical method, with which the laser light is converted by interfacial atoms to photons with energies in the near ultraviolet range by doubling of the frequency. This purely optical spectroscopic method with frequency doubling allows nondestructive characterisation of the oxidation process under real conditions and also provides very high interfacial sensitivity, in comparison with other optical methods.

The Si(111)-SiO2 interface is a prime example of an abrupt transition from a perfect crystal structure to an amorphous oxide. In contrast to the technologically more relevant Si(100) surface, the surface of a (111)-terminated silicon crystal possesses a structure consisting of bi-layers, in which changes in the bond structure resulting from oxidation can be observed especially well.

Source: Technical University Clausthal

Explore further: Evidence mounts for quantum criticality theory

add to favorites email to friend print save as pdf

Related Stories

Perovskite solar cell reaches record efficiency

Jan 08, 2015

A team of researchers with Korea Research Institute of Chemical Technology and Sungkyunkwan University has developed a new formula for mixing perovskite structures that has led to the team achieving a new ...

Recommended for you

Galaxy dust findings confound view of early Universe

6 hours ago

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Evidence mounts for quantum criticality theory

22 hours ago

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

Scaling up armor systems

Jan 30, 2015

Dermal modification is a significant part of evolution, says Ranajay Ghosh, an associate research scientist in the College of Engineering. Almost every organism has something on its skin that provides important ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

The first optically synchronised free-electron laser

Jan 30, 2015

Scientists at DESY have developed and implemented an optical synchronisation system for the soft X-ray free-electron laser FLASH, achieving facility-wide synchronisation with femtosecond precision. The performance ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.