MicroRNAs can be tumor suppressors

Apr 25, 2007

University of Virginia researchers have discovered that microRNAs, a form of genetic material, can function as tumor suppressors in laboratory studies.

In the May 1 issue of Genes & Development, UVa researchers Drs. Yong Sun Lee and Anindya Dutta have shown that microRNAs can suppress the overexpression of a gene called HMGA2. This gene is related to creation of fatty tissue and certain tumors, as well as diet-induced obesity.

MicroRNA is a single-stranded RNA that is typically only 20-25 nucleotides long and is related to regulating the expression of other genes.

"Overexpression of the HMGA2 gene is an essential feature of many medically significant tumors, such as uterine fibroids,” explains Dr. Dutta. “It is very exciting to realize that microRNAs have an important role in suppressing the overexpression of HMGA2. Thus, they may also have a role in causing, and perhaps curing, a disease that is responsible for the vast majority of hysterectomies in the Western world."

Studying chromosomal HMGA2 translocations that are associated with human tumors, the researchers found that, in normal cells, a microRNA called let-7 binds to the 3’ end of the HMGA2 mRNA transcript and suppresses its expression in the cell cytosol. However, chromosomal breaks that shorten the 3’ end of the HMGA2 transcript,and prevent let-7 binding, result in aberrantly high levels of HMGA2 expression and tumorigenesis (formation of tumors).

This paper establishes that HMGA2 is a target of let-7, and that the let-7 microRNA functions as a tumor suppressor to prevent cancer formation in healthy cells.

Source: University of Virginia

Explore further: Assortativity signatures of transcription factor networks contribute to robustness

add to favorites email to friend print save as pdf

Related Stories

Zambia lifts ban on safari hunting

56 minutes ago

Zambia has lifted a 20-month ban on safari hunting because it has lost too much revenue, but lions and leopards will remain protected, the government said Wednesday.

Recommended for you

Mutation disables innate immune system

21 hours ago

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

Aug 28, 2014

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

The genes behind the guardians of the airways

Aug 27, 2014

Dysfunctions in cilia, tiny hair-like structures that protrude from the surface of cells, are responsible for a number of human diseases. However the genes involved in making cilia have remained largely elusive. ...

User comments : 0