Novel drug preventing protein recycling shows potential for treating leukemia

Apr 19, 2007

Researchers from the Children's Cancer Hospital at The University of Texas M. D. Anderson Cancer Center have found that a novel targeted therapy effectively treats acute leukemia in animal models by preventing cancer cells from being purged of damaged proteins.

In the March online issue of the journal Blood, investigators reported that the new proteasome inhibitor, NPI-0052, not only successfully kills leukemia cells, but also shows greater efficacy than its predecessor bortezomib when combined with other agents in animal models.

According to researchers, proteasomes clean out mutated or damaged proteins within cells, which promotes cell growth and allows cancer cells to rapidly reproduce. Proteasome inhibitors block this process, resulting in apoptosis, or cell death, of the malignant cells.

Bortezomib is the first and only FDA-approved proteasome inhibitor. Although it is effective for treating multiple myeloma and mantle cell lymphoma, it was proven to be ineffective as a single agent against leukemia in clinical trials. NPI-0052 varies from bortezomib in ways that researchers at M. D. Anderson hope will make NPI-0052 effective in a human clinical trial.

"NPI-0052 targets the proteasome through different intermediaries and is more potent than bortezomib in leukemia cells," says senior author Joya Chandra, Ph.D., assistant professor of pediatrics from the Children's Cancer Hospital at M. D. Anderson. "Therefore we can use less of the drug to inhibit the proteasome."

NPI-0052 inhibits the main enzymatic activity of the proteasome three times more effectively than bortezomib as a single agent. When combined with a histone deacetylase (HDAC) inhibitor, another anti-cancer agent, NPI-0052 achieves four-fold greater synergistic effects than bortezomib.

M. D. Anderson currently has a Phase I clinical trial led by principal investigator Razelle Kurzrock, M.D., to test NPI-0052 on adult patients with solid tumor malignancies and recurrent lymphoma. Chandra's group is the first group to be studying the effects of the drug in acute leukemia models.

"This drug, so far, has shown efficacy in animal models of leukemia, myeloma and colon cancer, and it has worked to kill multiple myeloma cells resistant to bortezomib," says Chandra. "As a result of our research, we're looking at the feasibility of combining NPI-0052 with HDAC inhibitors in the future to treat leukemia."

Source: University of Texas M. D. Anderson Cancer Center

Explore further: High-dose flu vaccine appears better for frail older adults in long-term care

add to favorites email to friend print save as pdf

Related Stories

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Cancer-killing nanodaisies

Nov 11, 2014

NC State researchers have developed a potential new weapon in the fight against cancer: a daisy-shaped drug carrier that's many thousands of times smaller than the period at the end of this sentence.

Driving cancer cells to suicide

Sep 30, 2014

Ludwig Maximilian University of Munich researchers report that a new class of chemical compounds makes cancer cells more sensitive to chemotherapeutic drugs. They have also pinpointed the relevant target ...

Chemists recruit anthrax to deliver cancer drugs

Sep 25, 2014

Bacillus anthracis bacteria have very efficient machinery for injecting toxic proteins into cells, leading to the potentially deadly infection known as anthrax. A team of MIT researchers has now hijacked ...

New functions for chromatin remodelers

Aug 28, 2014

Large molecular motors consisting of up to a dozen different proteins regulate access to the genome, which is essential for the transcription of genes and for the repair of DNA damage. Susan Gasser and her ...

'Nanodaisies' deliver drug cocktail to cancer cells

May 28, 2014

(Phys.org) —Biomedical engineering researchers have developed daisy-shaped, nanoscale structures that are made predominantly of anti-cancer drugs and are capable of introducing a "cocktail" of multiple ...

Recommended for you

11th Sierra Leonean doctor dies from Ebola

19 minutes ago

One of Sierra Leone's most senior physicians died Thursday from Ebola, the 11th doctor in the country to succumb to the disease, a health official said.

In the battle against Ebola, a double-layer solution

45 minutes ago

When working with Ebola patients, protective gear works, but removing it can be harrowing. Seeking to protect health care workers from the precarious nature of taking off soiled gloves, Cornell students have ...

New hope for rare disease drug development

11 hours ago

Using combinations of well-known approved drugs has for the first time been shown to be potentially safe in treating a rare disease, according to the results of a clinical trial published in the open access Orphanet Journal of ...

Three weeks since last Ebola case in Mali: WHO

14 hours ago

Mali has not had a case of Ebola for three weeks, the World Health Organization said Wednesday, completing one of the two incubation periods the country needs to be declared free of the virus.

Migraine may double risk for facial paralysis

15 hours ago

Migraine headache may double the risk of a nervous system condition that causes facial paralysis, called Bell's palsy, according to a new study published in the December 17, 2014, online issue of Neurology, the medical journa ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.