Jefferson researchers' discovery may change thinking on how viruses invade the brain

Apr 19, 2007

A molecule thought crucial to ferrying the deadly rabies virus into the brain, where it eventually kills, apparently isn’t. The surprising finding, say researchers at Jefferson Medical College in Philadelphia, may change the way scientists think about how central nervous system-attacking viruses such as herpes viruses invade the brain and cause disease.

According to Matthias Schnell, Ph.D., professor of microbiology and immunology at Jefferson Medical College of Thomas Jefferson University, viruses such as rabies must be actively transported to the brain and central nervous system. The LC8 protein was thought to tether viruses to the cellular transport machinery in order to get there.

But Dr. Schnell and his co-workers found that this protein complex is instead a "transcription factor" that plays a role in virus reproduction. "We think that this finding has implications not only for rabies but many viruses that previously were thought to use this complex for transport, such as herpes viruses," he says. They report their results online this week in the journal Proceedings of the National Academy of Sciences.

To understand the role of LC8 in rabies disease in the brain, the team compared a rabies virus strain with the LC8 "binding domain" (where the rabies virus and LC8 protein interact) to a virus lacking it. They showed that in mice that were infected with rabies without the LC8 binding domain, the virus was still able to infect the brain, but did not cause disease. The virus’ ability to reproduce was greatly diminished.

"What we found has nothing to do with transport," Dr. Schnell says. "We saw that the virus was weakened if we removed the LC8 binding site and viral replication and transcription were affected. But we didn’t find a difference in the initial viral entry in the central nervous system. We actually saw that the virus replicated better with the binding site than without it. LC8 is a transcription factor that helps the virus efficiently replicate in cells."

The researchers were surprised by the finding. "The field in general has been focusing on this general dynein-LC8 protein interaction as key to viral transport," says co-author John Williams, Ph.D., assistant professor of biochemistry and molecular biology at Jefferson Medical College. "We found that while transport must happen – it’s essential to viral infection and spread and disease progression – it’s not through this mechanism. There’s more to the story."

"We think we have to have a closer look at how viral transport in general works," Dr. Schnell says. "Viral transport has to be revisited."

Next, the scientists plan to pay closer attention to other parts of the dynein-LC8 interaction, and attempt to find other proteins that could be involved in viral transport.

Source: Thomas Jefferson University

Explore further: Scientists discover new clues to how weight loss is regulated

add to favorites email to friend print save as pdf

Related Stories

UK wind power share shows record rise

30 minutes ago

The United Kingdom wind power production has been enjoying an upward trajectory, and on Tuesday wind power achieved a significant energy production milestone, reported Brooks Hays for UPI. High winds from Hurricane Gonzalo were the force behind wind turbines outproducing nuclear power ...

Cloning whistle-blower: little change in S. Korea

2 hours ago

The whistle-blower who exposed breakthrough cloning research as a devastating fake says South Korea is still dominated by the values that allowed science fraudster Hwang Woo-suk to become an almost untouchable ...

Glass maker deals to exit Apple, Arizona plant

2 hours ago

Nearly 2,000 furnaces installed in a factory to make synthetic sapphire glass for Apple Inc. will be removed and sold under a deal between the tech giant and the company that had been gearing up to produce huge amounts of ...

Recommended for you

Growing a blood vessel in a week

1 hour ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

4 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

23 hours ago

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0