Researchers unlock key to memory storage in brain

Apr 19, 2007

Scientists know little about how the brain assigns cells to participate in encoding and storing memories. Now a UCLA/University of Toronto team has discovered that a protein called CREB controls the odds of a neuron playing a role in memory formation. The April 20 edition of Science reports the findings, which suggest a new approach for preserving memory in people suffering from Alzheimer's or other brain injury.

"Making a memory is not a conscious act," explained Alcino Silva, principal investigator and a professor of neurobiology and psychiatry at the David Geffen School of Medicine at UCLA. "Learning triggers a cascade of chemicals in the brain that influence which memories are kept and which are lost.

"Earlier studies have linked the CREB protein to keeping memories stable," added Silva, a member of the UCLA Brain Research Institute. "We suspected it also played a key role in channeling memories to brain cells that are ready to store them."

Silva and his colleagues used a mouse model to evaluate their hypothesis. They implanted CREB into a virus, which they introduced into some of the cells in the animal's amygdala, a brain region critical to emotional memory.

Next they tested the mouse's ability to recall a specific cage it had visited before. The cage was outfitted with patterned walls and a unique smell.

To visualize which brain cells stored the mouse's memories about the cage, the scientists tracked a genetic marker that reveals recent neuron activity. When the team examined the animals' amygdalas after the experiment, they found substantial amounts of CREB and the marker in neurons.

"We discovered that the amount of CREB influences whether or not the brain stores a memory," said Silva. "If a cell is low in CREB, it is less likely to keep a memory. If the cell is high in CREB, it is more likely to store the memory."

Human implications of the new research could prove profound.

"By artificially manipulating CREB levels among groups of cells, we can determine where the brain stores its memories," he explained. "This approach could potentially be used to preserve memory in people suffering from Alzheimer's or other brain injury. We may be able to guide memories into healthy cells and away from sick cells in dying regions of the brain."

Our memories define who we are, so learning how the brain stores memory is fundamental to understanding what it is to be human, Silva observed.

"A memory is not a static snapshot," he said. "Memories serve a purpose. They are about acquiring information that helps us deal with similar situations in the future. What we recall helps us learn from our past experiences and better shape our lives."

Source: University of California - Los Angeles

Explore further: Neutralising antibodies for safer organ transplants

add to favorites email to friend print save as pdf

Related Stories

Latin America universities fail to make grade

Oct 13, 2014

Nobel prize week can prompt uncomfortable soul-searching at universities in Latin America, which has produced relatively few winners in the sciences—a symptom, experts say, of the region's struggles in ...

Frenchman Tirole wins Nobel economics prize

Oct 13, 2014

(AP)—French economist Jean Tirole won the Nobel prize for economics Monday for research on market regulation that has helped policymakers understand how to deal with industries dominated by a few companies.

The 2014 Nobel Prizes at a glance

Oct 13, 2014

(AP)—All winners of the 2014 Nobel Prizes have now been announced, starting with the medicine award a week ago and ending with the economics prize on Monday.

Recommended for you

Neutralising antibodies for safer organ transplants

10 hours ago

Serious complications can arise following kidney transplants. If dialysis is required within the first seven days, then the transplanted organ is said to have a Delayed Graft Function (DGF), and essentially ...

User comments : 0