Researchers develop technique for bacteria crowd control

Apr 17, 2007
Researchers develop technique for bacteria crowd control
Image illustrates swimming bacteria in a thin film.

A surprising technique to concentrate, manipulate, and separate a wide class of swimming bacteria has been identified through a collaboration between researchers at Argonne National Laboratory, Illinois Institute of technology, University of Arizona at Tucson, and Cambridge University, UK. This device could have enormous applications in biotechnology and biomedical engineering including use in miniaturized medical diagnostic kits and bioanalysis.

The technique is based on the transmission of tiny electric current in a very thin film sample cell containing a colony of bacteria. The current produces electrolysis that changes the local pH level in the vicinity of the electrodes. The bacteria, uncomfortable with the changes in pH, swim away from the electrodes and ultimately congregate in the middle of the experimental cell. Concentrated bacteria form self-organized swirls and jets resembling vortices in vigorously stirred fluid.

The method, which is suitable for flagellated bacteria such as E.coli, Bacillus subtilis, among many others, relies on the ability of bacteria to swim toward areas of optimal pH level. The bacteria live in an environment of a specific pH level, so that an increase or decrease of pH stimulates the bacteria to avoid areas of non-comfortable pH and swim in the direction of pH gradient. The researchers used an electric current to create a controlled deviation of the pH levels from the bulk values. Since only living bacteria respond to the pH stimulation, using this method can separate living and dead cells or bacteria with different motility.

The device, capable to change the thickness of a film from 1mm to 1 micron (with accuracy of 5 percent) and control the position of electrodes, is intended to separate and concentrate small quantities of live /dead microorganisms in confined spaces. It can be used for the purposes of express bioanalysis, diagnostic, and identification of small bacterial samples, and separation sicken/live cells. A patent for the device is currently pending.

"Using this method, our research succeeded in dramatically increasing the concentration of microorganisms in tiny fluid drops and films. Unlike traditional centrifuging techniques, the new approach allows selective concentration of healthy cells," said Andrey Sokolov, Ph.D. student from Illinois Institute of Technology and contributor to the research.

In addition to the development of the device used in the experimentation, research findings uncovered the explanation for the long-standing fundamental question on the properties of collective and organized motion in the systems of interacting self-moving objects. Besides swimming bacteria, other examples include bird flocks, fish schools, motor proteins in living cell, and even swarms of communicating nano-robots.

"We have presented experimental studies of collective bacterial swimming in thin fluid films where the dynamics are essentially two-dimensional and the concentration can be adjusted continuously," explained Igor Aronson, physicists at Materials Science Division, Argonne National Laboratory. "Our results provide strong evidence for the pure hydrodynamic origin of collective swimming, rather than chemotactic mechanisms of pattern formation when microorganisms just follow gradients of a certain chemical, such as nutrient, Oxygen, or other."

Source: Argonne National Laboratory

Explore further: Obama recommends extended wilderness zone in Alaska

add to favorites email to friend print save as pdf

Related Stories

Drought sees Rio's main hydro plant turned off

7 hours ago

A major Rio hydroelectric power plant was switched off after water levels slipped below an operational minimum following severe drought, Brazil's national grid told AFP on Thursday.

Recommended for you

Researchers find unusually elastic protein

2 hours ago

Scientists at Heidelberg University have discovered an unusually elastic protein in one of the most ancient groups of animals, the over 600-million-year-old cnidarians. The protein is a part of the "weapons system" that the ...

Obama recommends extended wilderness zone in Alaska

18 hours ago

US President Barack Obama said Sunday he would recommend a large swath of Alaska be designated as wilderness, the highest level of federal protection, in a move likely to anger oil proponents.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.