Building the nuclear pore piece by piece

Apr 16, 2007
Building the nuclear pore piece by piece
New depictions of proteins in the nuclear pore complex, which controls how materials enter and leave the nucleus, suggests that they move along a sliding track. The arrangement may help the nuclear pore accommodate cargo in a range of sizes.

The nuclear pore complexes are the sole gatekeepers for the cell’s nucleus — proteins, RNA, viruses, anything that passes between the nucleus and the rest of the cell has to use one of these giant protein assemblies. But exactly how each of the almost 2,000 pores that are embedded in the nuclear membrane control this transport has so far remained largely mysterious. It’s a critical gap in our knowledge; because the nuclear pore is the only way in or out of the nucleus, the cell is in dire straits when the pore malfunctions, as in forms of leukemia where nuclear pore complex proteins are mutated.

Two new structural renderings of nuclear pore complex proteins, however, created in the Nobel Prize-winning lab that has worked for nearly 40 years on understanding how proteins are transported within cells, are beginning to shed light on this puzzling assembly.

Each nuclear pore is a portal running between the nucleus, which holds all of the cell’s DNA, and the rest of the cell, which contains much of the cell’s machinery and can communicate with the outside environment. The core of the structure is a symmetrical tunnel, each end of which is studded with an assortment of “gatekeeper” proteins. These gatekeeper proteins — there are about 30 different kinds found in various combinations — join to form some of the largest protein complexes within any cell. The sheer size of the nuclear pore makes the task of isolating its components, and studying their functions, daunting.

To tackle this problem, members of Günter Blobel’s Laboratory of Cell Biology have designed an approach where the nuclear pore complex is broken into smaller, more manageable pieces whose structures can be solved using x-ray crystallography. The entire atomic model of the nuclear pore complex could be built, like a puzzle, by fitting the smaller structures together.

However, when Ivo Melcák, a research associate, and André Hoelz, a postdoc, looked carefully at the crystal structure of two of these components, mammalian proteins called Nup58 and Nup45, they were surprised by what they found: the two proteins in four different conformations. Crystallography usually shows a protein, or proteins, in their most common state; so how could there be four?

The researchers took a closer look at the amino acids that were interacting on each of the two proteins. On each side of the two proteins they saw a long line of charged residues that could interact like a series of magnets. The two proteins could loosely associate with each other in any of a variety of ways, with no one way more common than any other.

“Crystallization is like taking photographs,” says Hoelz, “trapping the protein in a single state. Our crystals show these proteins being very dynamic and moving around.” In fact, when they arranged the different snapshots one after another, like a flipbook, they saw that the Nup58/45 proteins were actually sliding back and forth along each other. The four conformations they had seen were different positions along the slide.

The scientists calculated that one pair of proteins could slide a large distance. Nup58 and Nup45 are also two of the most abundant proteins in the nuclear pore complex — they line much of the central channel. If they each slide a long way, it would suggest that the nuclear pore could change the size of its central channel drastically, like a camera aperture. In this way, the pore could accommodate both small and large cargo passing through the channel. It is the first time this type of movement has ever been documented.

During this time, Hoelz was also working with Johanna Napetschnig, a graduate student in Blobel’s lab, to crystallize a different nuclear pore complex protein, Nup214. The two researchers compared their structure of mammalian Nup214 to the structure of the same protein in yeast and saw for the first time how different these homologous proteins can be in how their core is decorated. The different decorations of the protein allow for many types of regulation in mammalian cells that would not be required in yeast, such as during cell division, where the mammalian, but not yeast, nuclear pore complex disassembles and then reassembles at the completion of the cell division.

The scientists hope that their understanding of the Nup214 structure will eventually shed light on its functional role in the pore and in cancer — particularly acute myeloid leukemia, which is linked to mutations in Nup214. “If you don’t know the structures of these proteins,” says Blobel, a Howard Hughes Medical Institute investigator and the university’s John D. Rockefeller Jr. Professor, “you will never be able to figure out which regions are important for regulation. These structures will provide crucial mechanistic insight into transport between the cytosol and the nucleus, shedding light on the role of specific proteins in diseases like cancer.”

Citations:
Science 315(5819): 1729-1732 (March 23, 2007)
Proceedings of the National Academy of Sciences 104(6): 1783-1788 (February 6, 2007)

Source: Rockefeller University

Explore further: Healthy humans make nice homes for viruses

add to favorites email to friend print save as pdf

Related Stories

New functions for chromatin remodelers

Aug 28, 2014

Large molecular motors consisting of up to a dozen different proteins regulate access to the genome, which is essential for the transcription of genes and for the repair of DNA damage. Susan Gasser and her ...

Nanoscale velcro used for molecule transport

Jun 25, 2014

Biological membranes are like a guarded border. They separate the cell from the environment and at the same time control the import and export of molecules. The nuclear membrane can be crossed via many tiny ...

Dissecting the brain's primary developmental engine

Sep 18, 2013

(Phys.org) —Last month, researchers reported the creation of the first primitive brain-like structures made from human stem cells. To create the complex morphology of these cerebral organoids, cells within a proliferating neuroectodermal layer were converted int ...

The 'weakest link' in the aging proteome

Sep 03, 2013

Proteins are the chief actors in cells, carrying out the duties specified by information encoded in our genes. Most proteins live only two days or less, ensuring that those damaged by inevitable chemical ...

Recommended for you

Healthy humans make nice homes for viruses

7 hours ago

The same viruses that make us sick can take up residence in and on the human body without provoking a sneeze, cough or other troublesome symptom, according to new research at Washington University School ...

Meteorite that doomed dinosaurs remade forests

9 hours ago

The meteorite impact that spelled doom for the dinosaurs 66 million years ago decimated the evergreens among the flowering plants to a much greater extent than their deciduous peers, according to a study ...

New camera sheds light on mate choice of swordtail fish

11 hours ago

We have all seen a peacock show its extravagant, colorful tail feathers in courtship of a peahen. Now, a group of researchers have used a special camera developed by an engineer at Washington University in ...

User comments : 0