Diffraction and scattering -- the solution to what's in solution

Apr 13, 2007
Diffraction and scattering -- the solution to what's in solution
Researchers at the Department of Energy's Argonne National Laboratory and the University of Notre Dame have successfully applied X-ray scattering techniques to determine how dissolved metal ions interact in solution. Credit: Argonne National Laboratory

Researchers at the Department of Energy’s Argonne National Laboratory and the University of Notre Dame have successfully applied X-ray scattering techniques to determine how dissolved metal ions interact in solution.

These findings will help researchers better understand how metal ions, such as those found in nuclear waste and other industrial processes, behave in the environment.

The results show that the ion structures are visible in solution and reveals their interactions with other ions.

"The scientific community has long asked the question, 'What happens to a metal ion in solution?'” said Suntharalingam “Skantha” Skanthakumar, Argonne senior scientific associate. "Direct measurement of metal correlations in solutions show long-range interactions and a strong correspondence to the structures in solution and solid state environment."

"We have been provided with additional structural and chemical insight into tetravalent actinide hydrolysis," said Lynda Soderholm, senior scientist at Argonne. "We discovered that the way atoms interact is transferable with a lot more detail than what was previously thought. Hydrolysis of dissolved metal ions is one of the most fundamental and important reactions in aqueous chemistry.”

Experiments for this work were conducted at Argonne’s Advanced Photon Source (APS). The 1,104-meter circumference APS accelerator complex, large enough to encircle a baseball stadium, houses a complex of machines and devices that produce, accelerate and store a beam of electrons that is the source of the APS X-rays. For this research, thin beams of high-energy X-rays were used to bombard the dissolved ions. When the X-rays scattered off the solutions, special CCD cameras equipped to detect them mapped out their two-dimensional pattern.

The detailed results of these findings were published in the paper, "Structures of Dimeric Hydrolysis Products of Thorium" and in the journal Inorganic Chemistry.

"Going forward, additional research is planned with thorium and other dissolvable materials across the periodic table," said Argonne postdoctoral researcher Richard E. Wilson. "The goal is to be able to predict reactions to metal contaminants and determine the chemistry that influences their transport in the environment"

This research involved collaborations from various scientific disciplines including input from physicists, chemists and geologists.

Source: Argonne National Laboratory

Explore further: New method allows for greater variation in band gap tunability

add to favorites email to friend print save as pdf

Related Stories

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

Liquid water fails to keep ions apart

Oct 10, 2014

When hydrochloric acid is added to water, the positively and negatively charged ions don't flee from each other, according to scientists at Pacific Northwest National Laboratory and Argonne National Laboratory. ...

Acid ions are more than spectators

Aug 07, 2014

(Phys.org) —X-ray absorption fine structure (EXAFS) measurements carried out at the U.S. Department of Energy's (DOE's) Advanced Photon Source, coupled with state-of-the-art density functional theory (DFT) ...

Project could expand use of company's lithium technology

May 29, 2014

Researchers at the U.S. Department of Energy's Argonne National Laboratory working with FMC Corporation (NYSE:FMC), Charlotte, N.C., have developed novel materials that would help expand technology and product ...

Recommended for you

Pinholes are pitfalls for high performance solar cells

19 hours ago

The most popular next-generation solar cells under development may have a problem – the top layer is full of tiny pinholes, researchers at the Okinawa Institute of Science and Technology Graduate University ...

Chemistry in a trillionth of a second

20 hours ago

Chemists at the University of Bristol, in collaboration with colleagues at the Central Laser Facility at the Rutherford Appleton Laboratory (RAL) and Heriot-Watt University (HWU), can now follow chemical ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.