Technology reveals 'lock and key' proteins behind diseases

Apr 12, 2007
Technology reveals 'lock and key' proteins behind diseases
The "iMYTH-system" shows a positive readout of our iMYTH sytem. If two proteins interact in iMYTH system the yeast cell will stain blue. Credit: Staglar lab

A new technology developed at the University of Toronto is revealing biochemical processes responsible for diseases such as cystic fibrosis and could one day pave the way for pharmaceutical applications.

A study appearing in the April 13 issue of Molecular Cell describes how U of T and Johns Hopkins University researchers designed a device to test for proteins that play an important role in human health and disease.

The technology, iMYTH (or integrated membrane yeast-two hybrid system), scans cells to detect proteins that interact with key proteins called ATP-binding cassette (ABC) transporters – proteins that, when impaired, can cause disease. One of the best known ABC transporters is the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), which, when disabled by mutation, causes cystic fibrosis, a hereditary disease that results in progressive disability and early death. Another important ABC protein is the Multidrug Resistance Protein (MRP), which normally removes drug metabolites and toxins from cells in our bodies but when overzealous can contribute to the drug resistance of tumours, thereby thwarting chemotherapy.

"All the cells in our bodies contain transporters that are poised in cellular membranes and act as ‘gatekeepers’ to allow the entry of certain substances, like nutrients, into the cell and promote the export of other substances, like toxins, out of the cell," says Professor Igor Stagljar, Department of Medical Genetics and Department of Biochemistry at the University of Toronto and lead author of the study. "When the function of these transporters is impaired, disease can result. This device gives us insights as to what proteins are interfering with this process."

iMYTH works by scanning cells to reveal proteins that fit with the transporters, the only screening system sophisticated enough to work with delicate membrane proteins. Simply, if two proteins interact in iMYTH, they will stain the yeast cell blue. "Like lock and key, if two proteins interact with one another, it is safe to assume they participate or regulate the same cellular process," explains Stagljar. "Identifying new interactors for ABC transporters may reveal unanticipated aspects of how these transporters function and help researchers gain clues for fighting disease and drug resistance."

Using iMYTH, the Stagljar lab identified six proteins that interact with and presumably communicate with the ABC transporter Ycf1p, a yeast version of the human proteins CFTR and MRP. These newly discovered protein interactors represent novel potential pharmaceutical targets. Through a series of biochemical and genetic tests, the researchers discovered that one of these interactors, Tus1p, regulates Ycf1p transporter function in a completely novel way to stimulate its ability to remove toxins from the cell.

"The more we learn about membrane proteins, the better we can use this knowledge for pharmacological and clinical applications," Stagljar says. "We work by putting together biochemical processes piece by piece like a puzzle. Hopefully soon we will have a complete picture of how many other diseases such as breast cancer, heart diseases, arthritis and schizophrenia are caused by mutations in various human membrane proteins."

Source: University of Toronto

Explore further: US scientists make embryonic stem cells from adult skin

add to favorites email to friend print save as pdf

Related Stories

Roots to shoots: Hormone transport in plants deciphered

Feb 20, 2014

Plant growth is orchestrated by a spectrum of signals from hormones within a plant. A major group of plant hormones called cytokinins originate in the roots of plants, and their journey to growth areas on ...

Hormone transport in plants deciphered

Feb 12, 2014

(Phys.org) —Plant growth is orchestrated by a spectrum of signals from hormones within a plant. A major group of plant hormones called cytokinins originate in the roots of plants, and their journey to growth ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

12 hours ago

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

23 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 0

More news stories

Suddenly health insurance is not for sale

(HealthDay)— Darlene Tucker, an independent insurance broker in Scotts Hill, Tenn., says health insurers in her area aren't selling policies year-round anymore.