Cell Structures Exhibit Novel Behaviors, Mimic Red Blood Cells and Liquid Crystals

Apr 11, 2007

Researchers at the University of Pennsylvania and Yale University have manipulated the internal, structural components of cells, creating a set of simulated cellular structures with novel mechanical properties, including one that acts like a red blood cell and another that mimics the soft, elastic behavior commonly found in novel synthetic materials called liquid crystal elastomers.

The findings point to nature's innate ability to create a variety of cell structures and behaviors using standard cell proteins and to science's potential to construct new classes of material by manipulating cell cytoplasm.

In a study reported online this month in Nature Physics, researchers fortified actin filament networks, the protein components in cell cytoplasm that help form the skeleton and the cell's capacity for movement, with protein crosslinks of varying length and elasticity.

"The resulting cell structures exhibited a number of novel and useful physical properties, depending upon the length of the filaments that formed the cell network," Dennis Discher, professor of biological engineering at Penn, said.

Those with very short actin filaments and long crosslinkers resemble the cytoskeleton of the red blood cell and remain isotropic, that is, maintain their shape under compression and shear. Since blood cells in blood flow experience hydrodynamic stresses from all directions, the isotropic properties of the simulated cells are well suited to the fluid stresses of blood flow.

Networks with longer filaments, which occur naturally in many types of animal cells, demonstrate different behavior. Loose networks with long crosslinkers are isotropic at zero stress, yet align under compression or shear, allowing these cells to adjust their cytoskeleton to the stresses in the environment. Such cell structures can be moved, or directed, as cells adjust to their surroundings.

"Semi-loose" networks have somewhat shorter crosslinks and are nematic, or thread-like at low stress, but become isotropic under dilation. "Tight" networks possess a locked-in nematic orientation, much like the cytoskeleton of the outer hair cell in the ear. This cell is responsible for the amplification of sound, and the oriented cytoskeleton helps direct sound propagation from the ear canal to the receiving neuron that interfaces to the brain.

A subset of the simulated cells, those with periodic crosslinks, demonstrate an especially unique type of super-soft behavior recently found in liquid crystal elastomers. Synthetic materials of this type have properties typified in liquid crystal displays but also the flexibility of highly elastic materials, such as latex gloves. The biologically based results highlight the fact that nature probably "did it first," and the results point the way towards the creation of new materials with novel optical, thermal and electrical properties.

The study was conducted by Discher, of Penn's School of Engineering and Applied Science, as well as Tom Lubensky, chair of Penn's Department of Physics and Astronomy in the School of Arts and Sciences, and Paul Dalhaimer of the Department of Molecular, Cellular and Developmental Biology at Yale University.

Source: University of Pennsylvania

Explore further: How the hummingbird achieves its aerobatic feats

add to favorites email to friend print save as pdf

Related Stories

Scientists map mouse genome's 'mission control centers'

Nov 19, 2014

When the mouse and human genomes were catalogued more than 10 years ago, an international team of researchers set out to understand and compare the "mission control centers" found throughout the large stretches ...

Viruses impaired if their targets have diverse genes

Nov 18, 2014

When a viral infection spread through five genetically identical mice in a row, the virus replicated faster and became more virulent or severe. But when the infection spread one-by-one through five genetically ...

Architecture of a lipid transport protein revealed

Nov 13, 2014

For the first time, the complex architecture of a protein that controls the transport of lipids between the two layers of a cell membrane has been described. With this structure, Biochemists from the University ...

Recommended for you

How the hummingbird achieves its aerobatic feats

17 hours ago

(Phys.org) —The sight of a tiny hummingbird hovering in front of a flower and then darting to another with lightning speed amazes and delights. But it also leaves watchers with a persistent question: How ...

New terahertz device could strengthen security

Nov 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

Nov 21, 2014

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.