The sturdier sex? Study finds female stem cells work better

Apr 09, 2007

Female stem cells derived from muscle have a greater ability to regenerate skeletal muscle tissue than male cells, according to a study at Children’s Hospital of Pittsburgh of UPMC.

The study, which is being published in the April 9 issue of the Journal of Cell Biology, is the first ever to report a difference in regenerative capabilities of muscle stem cells based on sex.

This finding could have a major impact on the successful development of stem cells as viable therapies for a variety of diseases and conditions, according to the study’s senior author, Johnny Huard, PhD, director of the Stem Cell Research Center at Children’s and the Henry J. Mankin Professor and Vice Chair for Research in the Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine.

"Regardless of the sex of the host, the implantation of female stem cells led to significantly better skeletal muscle regeneration," said Dr. Huard, also the deputy director of the McGowan Institute of Regenerative Medicine. "Based on these results, future studies investigating regenerative medicine should consider the sex of the stem cells to be an important factor. Furthermore, investigations such as ours could lead to a better understanding of sex-related differences in aging and disease and could explain, at least partially, the high variability and conflicting results reported in the literature on stem cell biology."

Dr. Huard’s team, and the study’s first author, Bridget Deasy, PhD, director of the Live Cell Imaging Lab at Children’s Stem Cell Research Center, made the discovery while working with a population of stem cells they isolated in the lab while searching for a cure for Duchene muscular dystrophy (DMD). DMD is a genetic disease estimated to affect one in every 3,500 boys. Patients with DMD lack dystrophin, a protein that gives muscle cells structure. Using an animal model of the disease, his laboratory is using stem cells to deliver dystrophin to muscles.

In this study, Dr. Huard’s team injected female and male muscle-derived stem cells into dystrophic mice and then measured the cells’ ability to regenerate dystrophin-expressing muscle fibers.

They then calculated the regeneration index (RI) – the ratio of dystrophin-positive fibers per 100,000 donor cells. Only one of the 10 male populations of implanted stem cells had an RI over 200. In contrast, 40 percent of the female stem cell populations had an RI higher than 200, and 60 percent of the female populations of stem cells had an RI higher than the mean RI of the male cells (95).

This difference may arise from innate sex-related differences in the cells’ stress responses, according to Dr. Deasy, an assistant professor in the Departments of Orthopaedic Surgery and Bioengineering at the University of Pittsburgh School of Medicine and School of Engineering, respectively.

The investigators examined several aspects of stem cell behavior. They screened for differences in thousands of genes, and they also looked for differences related to estrogen. In many ways the male and female stem cells were similar, Dr. Deasy said.

"The major difference was what we observed after exposing the cells to stress or after cell transplantation in the animals that have muscular dystrophy. Transplantation of female cells leads to a much more significant level of skeletal muscle regeneration," she said. "The male cells exhibited increased differentiation after exposure to oxidative stress, which may lead to cell depletion and a proliferative advantage for female cells after cell transplantation."

Source: Children's Hospital of Pittsburgh

Explore further: GMO mosquito plan sparks outcry in Florida

add to favorites email to friend print save as pdf

Related Stories

Growing functioning brain tissue in 3D

Jan 29, 2015

Researchers at the RIKEN Center for Developmental Biology in Japan have succeeded in inducing human embryonic stem cells to self-organize into a three-dimensional structure similar to the cerebellum, providing ...

Recommended for you

GMO mosquito plan sparks outcry in Florida

20 hours ago

A British company's plan to unleash hordes of genetically modified mosquitoes in Florida to reduce the threat of dengue fever and other diseases has sparked an outcry from fearful residents.

Population genomics unveil seahorse domain

Jan 30, 2015

In a finding vital to effective species management, a team including City College of New York biologists has determined that the lined seahorse (Hippocampus erectus) is more a permanent resident of the we ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.