Scientists decode genome of oral pathogen

Apr 05, 2007
Scientists decode genome of oral pathogen
Transmission electron micrograph of S. sanguinis. Image courtesy of Lauren Turner/VCU

Virginia Commonwealth University researchers have decoded the genome of a bacteria normally present in the healthy human mouth that can cause a deadly heart infection if it enters the bloodstream.

The finding enables scientists to better understand the organism, Streptococcus sanguinis, and develop new strategies for treatment and infection prevention.

S. sanguinis, a type of bacteria that is naturally present in the mouth, is among a variety of microorganisms responsible for the formation of dental plaque. In general, S. sanguinis is harmless. However, if it enters the bloodstream, possibly through a minor cut or wound in the mouth, it can cause bacterial endocarditis, a serious and often lethal infection of the heart.

Individuals with preexisting heart problems are at an increased risk of developing bacterial endocarditis. The infection may result in impaired heart function and complications such as heart attack and stroke. Typically, before dental surgery, such patients are given high dose antibiotics to prevent infection.

Decoding S. sanguinis, a streptococcal bacteria, will provide researchers with unique insight into its complex life cycle, metabolism and its ability to invade the host and cause bacterial endocarditis.

"We can apply this information toward the design of new treatments and preventative strategies to protect against this disease," said lead investigator, Francis Macrina, Ph.D., VCU's vice president for research. "Analysis of the genome revealed a surprising number of proteins on the S. sanguinis cell surface that may be new targets for drugs or vaccines. We are already at work pursuing some of these leads."

Although it is not directly associated with tooth decay or gum disease, S. sanguinis is a prominent member of dental plaque. "Genomic studies of this organism will also help us better understand the formation of dental plaque and the initiation of oral diseases," added Macrina.

The team reported that the genome of the gram-positive bacterium is a circular DNA molecule consisting of approximately 2.4 million base pairs. They analyzed the S. sanguinis genome and found that it was larger than other streptococci that have been sequenced. Some of this extra DNA was apparently adopted from another bacterium and encodes genes that may give S. sanguinis the ability to survive better in the face of good oral hygiene. If so, this could explain the recent emergence of S. sanguinis as an important pathogen.

"The sequence of the S. sanguinis genome gives us a comprehensive view of the biological potential of this important pathogen," said Gregory A. Buck, Ph.D., director of the Center for the Study of Biological Complexity at VCU, who directed the sequencing and analysis. "This data opens a window into the inner workings of this bacterium. We now may be able to determine how and why these organisms cause disease."

The findings were reported in the April 2007 issue of the Journal of Bacteriology, which is published by the American Society of Microbiology.

Source: Virginia Commonwealth University

Explore further: Mystery of the reverse-wired eyeball solved

add to favorites email to friend print save as pdf

Related Stories

Researchers bring clean energy a step closer

2 hours ago

For nearly half a century, scientists have been trying to replace precious metal catalysts in fuel cells. Now, for the first time, researchers at Case Western Reserve University have shown that an inexpensive metal-free catalyst ...

Barclays to allow payments by using Twitter handles

3 hours ago

The next chapter in banks moving into the digital age is a stretch beyond reminding customers over phone lines that they can also bank online. Barclays has launched Twitter payments through Pingit.

Predicting human crowds with statistical physics

3 hours ago

For the first time researchers have directly measured a general law of how pedestrians interact in a crowd. This law can be used to create realistic crowds in virtual reality games and to make public spaces safer.

Recommended for you

Mystery of the reverse-wired eyeball solved

3 hours ago

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

3 hours ago

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

6 hours ago

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

A gene for brain size only found in humans

8 hours ago

About 99 percent of human genes are shared with chimpanzees. Only the small remainder sets us apart. However, we have one important difference: The brain of humans is three times as big as the chimpanzee ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.