Supernova impostor goes supernova

Apr 04, 2007
Supernova 2006jc
Swift Ultraviolet/Optical Telescope image of Supernova 2006jc in the galaxy UGC 4904 in three filters. Credit: NASA/Swift/S. Immler

In a galaxy far, far away, a massive star suffered a nasty double whammy. On Oct. 20, 2004, Japanese amateur astronomer Koichi Itagaki saw the star let loose an outburst so bright that it was initially mistaken for a supernova. The star survived, but for only two years. On Oct. 11, 2006, professional and amateur astronomers witnessed the star actually blowing itself to smithereens as Supernova 2006jc.

"We have never observed a stellar outburst and then later seen the star explode," says University of California at Berkeley astronomer Ryan Foley. His group studied the event with ground-based telescopes, including the 10-meter (32.8-foot) Keck telescope in Hawaii. Narrow helium spectral lines showed that the supernova's blast wave ran into a slow-moving shell of material, presumably the progenitor's upper layers ejected just two years earlier. If the spectral lines had been caused by the supernova's fast-moving blast wave, the lines would have been much broader.

Another group, led by Stefan Immler of NASA's Goddard Space Flight Center, Greenbelt, Md., monitored SN 2006jc with NASA's Swift satellite and Chandra X-ray Observatory. By observing how the supernova brightened in X-rays, a result of the blast wave slamming into the outburst ejecta, they could measure the amount of gas blown off in the 2004 outburst: about 0.01 solar mass.

"The beautiful aspect of SN 2006jc is that everything makes sense," says Immler. "Even though our two teams observed the supernova with different instruments and at different wavelengths, we have reached identical conclusions about what happened."

"This event was a complete surprise," adds Alex Filippenko, leader of the University of California at Berkeley/Keck supernova group, and a coauthor on both studies. "It opens up a fascinating new window on how some kinds of stars die."

All the observations suggest that the supernova's blast wave took only a few hours to reach the shell of material ejected two years earlier, which did not have time to drift very far from the star. As the wave smashed into the ejecta, it heated the gas to millions of degrees, hot enough to emit copious X-rays. NASA's Swift satellite saw the supernova continue to brighten in X-rays for 100 days, something that has never been seen before in a supernova. All supernovae previously observed in X-rays have started off bright and then quickly faded to invisibility.

"You don't need a lot of mass in the ejecta to produce a lot of X-rays," notes Immler. Swift's ability to monitor the supernova's X-ray rise and decline over six months was crucial to his team's mass determination. But he adds that Chandra's sharp resolution enabled his group to resolve the supernova from a bright X-ray source that appears in the field of view of Swift's X-ray Telescope.

"We could not have made this measurement without Chandra," says Immler, who is submitting his team's paper to the Astrophysical Journal. "The synergy between Swift's fast response and its ability to observe a supernova every day for a long period, and Chandra's high spatial resolution, is leading to a lot of interesting results."

Foley and his colleagues, whose paper appears in the March 10 Astrophysical Journal Letters, propose that the star recently transitioned from a Luminous Blue Variable (LBV) star to a Wolf-Rayet star. An LBV is a massive star in a brief but unstable phase of stellar evolution. Similar to the 2004 eruption, LBVs are prone to blow off large amounts of mass in outbursts so extreme that they are frequently mistaken for supernovae, events dubbed "supernova impostors." Wolf-Rayet stars are hot, highly evolved stars that have shed their outer envelopes.

Most astronomers did not expect that a massive star would explode so soon after a major outburst, or that a Wolf-Rayet star would produce such a luminous eruption, so SN 2006jc represents a challenge for theorists. "It disrupts our current model of stellar evolution," says Foley. "We really don't know what caused this star to have such a large eruption so soon before it went supernova."

"SN 2006jc provides us with an important clue that LBV-style eruptions may be related to the deaths of massive stars, perhaps more closely than we used to think," adds coauthor Nathan Smith, also of the University of California at Berkeley. "The fact that we have no well-established theory for what actually causes these outbursts is the elephant in the living room that nobody is talking about."

Source: Goddard Space Flight Center

Explore further: Image: Multicoloured view of supernova remnant

add to favorites email to friend print save as pdf

Related Stories

Throwing money at data breach may make it worse

26 minutes ago

Information systems researchers at the University of Arkansas, who studied the effect of two compensation strategies used by Target in reaction to a large-scale data breach that affected more than 70 million customers, have ...

How will Google, Apple shake up car insurance industry?

36 minutes ago

Car insurance industry, meet potential disrupters Google and Apple. Currently, nearly all mainstream insurers that offer driver-monitoring programs use relatively expensive devices that plug into a portal under the dashboard. ...

Researchers on expedition to solve 'small island problem'

36 minutes ago

Researchers from the Department of Electronic & Electrical Engineering are starting their new year with an expedition to the island of South Georgia to carry out research into improving weather forecasting. You can follow the team's progress on their blog. ...

Recommended for you

Image: Multicoloured view of supernova remnant

11 hours ago

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Ultra-luminous X-ray sources in starburst galaxies

11 hours ago

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including ...

When a bright light fades

11 hours ago

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

Image: Horsehead nebula viewed in infrared

12 hours ago

Sometimes a horse of a different color hardly seems to be a horse at all, as, for example, in this newly released image from NASA's Spitzer Space Telescope. The famous Horsehead nebula makes a ghostly appearance ...

The Milky Way's new neighbour

12 hours ago

The Milky Way, the galaxy we live in, is part of a cluster of more than 50 galaxies that make up the 'Local Group', a collection that includes the famous Andromeda galaxy and many other far smaller objects. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.