Hey, WIMPs: Beware of Dwarf

Apr 03, 2007 By Alison Drain
Hey, WIMPs: Beware of Dwarf
Arrows in the center of this image point toward the supermassive black hole at the galactic center of the Milky Way galaxy. GLAST data may soon provide evidence of WIMP-burning stars nearby. Credit: European Southern Observatory

Stars may be bullies in their old age. White dwarfs—dense, collapsed stars in their final stage of life—could be skilled at swallowing and annihilating weakly interacting massive particles (WIMPs). These particles may constitute a large portion of the dark matter in the universe, and could form extremely dense concentrations near supermassive black holes.

Physicists Igor Moskalenko and Lawrence Wai plan to glean GLAST data to learn whether these concentrations of dark matter exist. If they do, WIMP-swallowing stars could reveal the secrets of black holes.

Their paper will be published in the April 10 issue of Astrophysical Journal Letters.

"This research could reveal a completely new kind of star, and could provide insight into how supermassive black holes evolve," Wai said. "We're very excited about this possibility."

A few bright stars are known to orbit very close to the supermassive black hole at our galaxy's center. WIMPs may concentrate near this black hole, where white dwarfs sweeping close by could efficiently capture and "burn," or annihilate, many of them. Moskalenko and Wai propose that using GLAST to find dark matter near the supermassive black hole could implicate stars seen orbiting nearby as thriving WIMP eaters.

Their hypothesis will soon be tested when GLAST collects gamma-ray data and scientists search for dark-matter annihilations near our galaxy's supermassive black hole. If it were to be found, a spike in dark matter concentration near the black hole would betray much about the nature of our universe.

"The observation of stars orbiting close to the supermassive black hole at the center of our galaxy was a huge discovery," Wai said. "If some of those stars are WIMP burners, they could provide unique information on dark matter structure."

Source: Stanford Linear Accelerator Center

Explore further: Black holes do not exist where space and time do not exist, says new theory

add to favorites email to friend print save as pdf

Related Stories

A recoiling, supermassive black hole

Jan 26, 2015

When galaxies collide, the central supermassive black holes that reside at their cores will end up orbiting one another in a binary pair, at least according to current simulations. Einstein's general theory ...

Black hole chokes on a swallowed star

Jan 26, 2015

A five-year analysis of an event captured by a tiny telescope at McDonald Observatory and followed up by telescopes on the ground and in space has led astronomers to believe they witnessed a giant black hole ...

High-speed jets from a possible new class of galaxy

Jan 19, 2015

Seyfert galaxies are similar to spiral galaxies except that they have extraordinarily prominent, bright nuclei, sometimes as luminous as 100 billion Suns. Their huge energies are thought to be generated as ...

The cosmic seeds of black holes

Jan 19, 2015

Supermassive black holes with millions or billions of solar-masses of material are found at the nuclei of most galaxies. During the embryonic stages of these galaxies they are thought to play an important ...

Galactic 'hailstorm' in the early universe

Jan 16, 2015

Two teams of astronomers led by researchers at the University of Cambridge have looked back nearly 13 billion years, when the Universe was less than 10 percent its present age, to determine how quasars - ...

Recommended for you

Galaxy dust findings confound view of early Universe

11 hours ago

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

Building the next generation of efficient computers

Jan 29, 2015

UConn researcher Bryan Huey has uncovered new information about the kinetic properties of multiferroic materials that could be a key breakthrough for scientists looking to create a new generation of low-energy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.