Heart failure: Intervention possibilities from imaging programmed cell loss

Apr 03, 2007

Using a nuclear medicine technique and molecular imaging to "see" programmed cell loss—the body's normal way of getting rid of unneeded or abnormal cells—may help in early identification of those individuals who are at risk of developing heart failure, say researchers in the April Journal of Nuclear Medicine.

"Our study indicates that it is feasible to noninvasively identify cell loss—or apoptosis—in heart failure patients using annexin A5 imaging," explained Leo Hofstra, director of cardiovascular imaging at the University Hospital of Maastricht in the Netherlands. "Such a strategy may offer a new possibility for studying interventions to minimize damage to the heart muscle," he added. "This research is significant since cell loss is potentially reversible and earlier intervention could delay the development of cardiomyopathy or heart muscle disease," noted Hofstra. He indicated that additional research is needed since the study was performed on a small group of heart patients.

"Heart failure is a major health care problem," said Hofstra, "and researchers are looking at novel ways to improve patient care." With heart failure, a person's heart no longer pumps sufficient blood to the body's organs. Nearly 5 million Americans are living with heart failure—a long-term condition that tends to gradually worsen—and 550,000 new cases are diagnosed each year.

Researchers attached a radioactive substance to annexin A5, a protein that binds to dying cells, said Hofstra. They then used nuclear imaging that produces three-dimensional computer-reconstructed images to reveal information about both structure and function to measure the amount of annexin A5 absorbed. Annexin A5 bound to the damaged heart muscle. "We discovered that higher uptake was uptake with a worse outcome. Cell death is one of the biological events that worsens left ventricular events," said Hofstra.

"Our results indicate that heart muscle cell death is an active and ongoing process in heart failure, and that annexin imaging could possibly guide treatment for heart patients and be used to determine whether a treatment was working," said Hofstra, co-author of "Noninvasive Detection of Programmed Cell Loss with 99mTc-Labeled Annexin A5 in Heart Failure." He anticipates that this research would spur development of new drugs for heart disease.

Source: Society of Nuclear Medicine

Explore further: The impact of bacteria in our guts

add to favorites email to friend print save as pdf

Related Stories

Microscopic rowing—without a cox

Jul 29, 2014

Many different types of cell, including sperm, bacteria and algae, propel themselves using whip-like appendages known as flagella. These protrusions, about one-hundredth of a millimetre long, function like ...

Finding the 'heart' of an obstacle to superconductivity

Jul 23, 2014

A team at Cornell and Brookhaven National Laboratory has discovered that previously observed density waves that seem to suppress superconductivity are linked to an electronic "broken symmetry," offering an ...

Recommended for you

The impact of bacteria in our guts

Aug 22, 2014

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

Aug 22, 2014

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

Aug 22, 2014

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 0