Genomic test could help detect radioactivity exposure from terrorist attacks

Apr 03, 2007

In the event of a nuclear or radiological catastrophe -- such as a nuclear accident or a “dirty bomb” -- thousands of people would be exposed to radiation, with no way of quickly determining how much of the deadly substance has seeped inside their bodies. Scientists at Duke University Medical Center have developed a new blood test to rapidly detect levels of radiation exposure so that potentially life-saving treatments could be administered to the people who need them most.

There appears to be a critical window of 48 to 72 hours for administering treatments aimed at halting the devastating effects of radiation, said senior study investigator John Chute, M.D., an associate professor of medicine in the Duke Adult Bone Marrow and Stem Cell Transplant Program. But existing tests for measuring radiation exposure take several days and are not practical for testing large numbers of patients at once.

“If a terrorist attack involving radioactive material were to occur, hospitals might be overrun with people seeking treatment, many of whom have actually been exposed and many of whom are simply panicked,” Chute said. “We have to be able to efficiently screen a large number of people for radiation exposure in order to respond effectively to a mass casualty event.”

The new test scans thousands of genes from a blood sample to identify distinct genomic “signatures” reflecting varying radiation doses. Patients can then be handled according to whether they received no exposure to radiation, an intermediate level of exposure that may respond to medical therapies or an inevitably lethal dose.

The researchers published their findings April 3, 2007, in the journal Public Library of Science (PLoS) Medicine. The research was funded by the National Institute of Allergy and Infectious Diseases.

High doses of radiation can damage or wipe out a person’s blood and immune systems, leading in some cases to bone marrow failure accompanied by infections, bleeding and a potentially heightened lifetime risk of cancer. Since the symptoms of radiation exposure can take days or weeks to develop, it could be difficult to identify individuals truly exposed without a practical test to make this distinction, the researchers said. Current treatments for radiation exposure aim to bolster the blood and immune systems before the damage becomes too severe.

Previous studies by researchers at the Duke Institute for Genome Sciences & Policy have used genomic technology to identify genes that can predict prognosis and response to chemotherapy within several types of cancers. In the current study, the Duke team used a similar strategy to determine which genes change in response to different levels of radiation exposure.

The researchers subjected mice to low, intermediate and high doses of radiation and looked for the impact of each dose on specific genes in the blood. They found that each dose resulted in distinct profiles, or signatures, representing 75 to 100 genes that could be used to predict the degree of exposure.

They also analyzed blood from human patients receiving bone marrow transplants who were treated with high doses of radiation prior to transplant and found specific gene profiles that distinguished the individuals that were exposed to radiation from those that were not with an accuracy of 90 percent.

“The goal now is to refine this test to the point that if a disaster were to occur, we could draw blood from thousands of people and have results back in time for treatment to have effect,” said Joseph Nevins, Ph.D., a professor of molecular genetics at Duke's Institute for Genome Sciences & Policy and co-investigator on the study.

These findings also could point to new treatments for victims of a radiological catastrophe, said lead study investigator Holly K. Dressman, Ph.D., an associate professor of molecular genetics at the Duke Institute for Genome Sciences & Policy. “By identifying genes that are major players in the response to radiation, we hope to compile a list of future targets for protection against its harmful effects.”

The researchers are currently refining the test by looking at the effects of time from exposure, gender, age and additional genetic factors on the ability of the test to predict radiation dose, Dressman said.

Source: Duke University Medical Center

Explore further: Decreased red blood cell clearance predicts development and worsening of serious diseases

Related Stories

Dwindling bird populations in Fukushima

Apr 15, 2015

This is the time of year when birds come out and really spread their wings, but since a disastrous day just before spring's arrival four years ago, Japan's Fukushima province has not been friendly to the ...

Flexing new muscles on the International Space Station

Apr 13, 2015

When people conjure an image of a robot in their mind, they may imagine something out of a steampunk story—complex gears, rotors and clockworks. All metal, no muscle—but that's all about to change.

Sixth Galileo satellite reaches corrected orbit

Mar 13, 2015

The sixth Galileo satellite of Europe's navigation system has now entered its corrected target orbit, which will allow detailed testing to assess the performance of its navigation payload.

Mars is the next step for humanity – we must take it

Feb 09, 2015

Elon Musk has built a US$12 billion company in an endeavour to pave the way to Mars for humanity. He insists that Mars is a "long-term insurance policy" for "the light of consciousness" in the face of cli ...

Prototype for first traceable PET-MR phantom

Jan 26, 2015

As cancer diagnostic tools, a new class of imagers – which combines positron-emission tomography (PET) with magnetic resonance imaging (MR or MRI) – has shown promise in the few years since these hybrid ...

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.