Scientists identify how development of different species uses same genes with distinct features

Mar 30, 2007

Biologists at New York University have identified how different species use common genes to control their early development and alter how these genes are used to accommodate their own features. The findings, which were discovered by researchers in Professor Claude Desplan’s and Steve Small’s laboratories in NYU’s Center for Developmental Genetics, offer new insight into the workings of developmental pathways across species. The study is published in the latest issue of the journal Science.

The researchers examined the fruit fly Drosophila and the wasp Nasonia as genetic model systems. Fruit flies’ development is well-understood by biologists and therefore serves as an appropriate focus for genetic analyses. In this study, the researchers sought to explore the generality of developmental mechanisms by comparing Drosophila with Nasonia, a distant species that diverged over 250 million years ago but one that presents many morphological similarities with flies in terms of development.

The research team’s results showed that flies and wasps employ most of the same genes and similar interactions among these genes, but some events are changed to adjust to the developmental constraints.

Flies rely on a gene called bicoid to pattern their early embryo. The bicoid gene product, a messenger RNA (mRNA), is localized at the anterior of the embryo where it is required both to promote anterior development and to repress posterior development. However, bicoid is unique to flies and does not exist in wasps or other species: The study’s findings show that it takes several mRNAs localized in the egg to achieve the same functions in wasps as bicoid does in flies. Two of these genes, which are found in most species of insects, are orthodenticle. Orthodenticle performs the anterior promoting function of bicoid while anterior localization of giant mRNA represses posterior development.

"This comparison of the molecular mechanisms employed by two independently evolved species not only uncovers those features essential to this portion of development, but also shows that we are now in a position to understand another species—in this case, the wasp—other than flies in the same depth," explained Desplan.

Source: New York University

Explore further: China's latest survey finds increase in wild giant pandas

add to favorites email to friend print save as pdf

Related Stories

Evolving a bigger brain with human DNA

Feb 19, 2015

The size of the human brain expanded dramatically during the course of evolution, imparting us with unique capabilities to use abstract language and do complex math. But how did the human brain get larger ...

Mutant bacteria that keep on growing

Feb 18, 2015

The typical Escherichia coli, the laboratory rat of microbiology, is a tiny 1-2 thousandths of a millimeter long. Now, by blocking cell division, two researchers at Concordia University in Montreal have g ...

If you could clone yourself, would you still have sex?

Feb 13, 2015

Imagine how easy life would be if you could produce offspring without a mate. Sexual reproduction is the most common mating system in the animal kingdom. But in many species, females do not require males ...

Recommended for you

A molecular compass for bird navigation

Feb 27, 2015

Each year, the Arctic Tern travels over 40,000 miles, migrating nearly from pole to pole and back again. Other birds make similar (though shorter) journeys in search of warmer climes. How do these birds manage ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.