Automated analyzer for complex nuclear waste provides rapid results

Mar 28, 2007

Identifying and quantifying specific alpha- and beta-emitting radionuclides in liquid solutions can be challenging and time consuming – typically taking from days to weeks to get results back from an analytical laboratory. But, when an industrial process-scale plant requires that an accurate, reliable analysis be completed in near real-time from samples retrieved directly from the process line, the challenge could be overwhelming.

However, scientists at Pacific Northwest National Laboratory have assembled a robust, fully automated prototype process monitor to meet demanding production needs.

The device developed by PNNL scientists provides microwave-assisted sample pretreatment, flexible chemical separations capabilities, sensitive radiochemical detection, calibration and data analysis. PNNL presenter Matthew J. O’Hara said, "This is the most extreme example of automation ever demonstrated by our team."

The prototype system was originally created to perform rapid radiochemical analysis of technetium-99 in nuclear waste destined for vitrification at the Hanford Site’s Waste Treatment Plant in Washington state. Samples can be adjusted, separated and analyzed in less than 15 minutes to provide feedback on process performance.

While developed for specific radionuclides in high-level nuclear waste process streams, the analyzer is capable of being adapted for use on a wide range of applications requiring an integrated system that performs sample preparation, column separations, on-line detection and data analysis conducted rapidly and autonomously.

PNNL scientists Jay W. Grate and Matthew O’Hara will describe pioneering work in the development of automated radiochemical analysis systems, radionuclide sensors and process monitoring approaches in back-to-back presentations at the 233rd American Chemical Society Meeting in Chicago.

Source: Pacific Northwest National Laboratory

Explore further: 3-D enzyme model provides new tool for anti-inflammatory drug development

add to favorites email to friend print save as pdf

Related Stories

Argonne model analyzes biofuel impacts

Jan 15, 2015

A new version of an online tool created by the U.S. Department of Energy's Argonne National Laboratory will help biofuels developers gain a detailed understanding of water consumption of various types of ...

Radiochemistry Annex: It's getting hot in there

Dec 29, 2014

Scientist Daniel Kaplan has found it challenging to study radionuclides in contaminated wetlands due to the radioactive hazard and the biogeochemical complexity of the subsurface soils. Fortunately, he's ...

Recommended for you

Cell imaging gets colorful

12 hours ago

The detection and imaging of protein-protein interactions in live cells just got a lot more colourful, thanks to a new technology developed by University of Alberta chemist Dr. Robert E. Campbell and his ...

New strategy to combat 'undruggable' cancer molecule

12 hours ago

Three of the four most fatal cancers are caused by a protein known as Ras; either because it mutates or simply because it ends up in the wrong place at the wrong time. Ras has proven an elusive target for ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.