Leukemic cells find safe haven in bone marrow

Mar 22, 2007

The cancer drug asparaginase fails to help cure some children with acute lymphoblastic leukemia (ALL) because molecules released by certain cells in the bone marrow counteract the effect of that drug, according to investigators at St. Jude Children's Research Hospital.

The researchers showed that mesenchymal cells in the bone marrow create a protective niche for leukemic cells by releasing large amounts of asparagine, an amino acid that nearby leukemic cells must have to survive but do not make efficiently. This extra supply of asparagine helps leukemic cells survive treatment with asparaginase, a drug that normally would deplete their supply of this vital nutrient, the researchers reported. Mesenchymal cells give rise to a variety of different tissues, such as osteoblasts (bone-building cells) and chondrocytes (cartilage-building cells), and form the nurturing environment where normal blood cells and leukemic cells grow.

"Leukemic cells that resist asparaginase and survive in this protective niche of the bone marrow might be the reason that leukemia recurs in some children who have been treated with this drug," said Dario Campana, M.D., Ph.D., a member of the St. Jude Oncology and Pathology departments.

Campana is senior author of the report that appears in the online pre-publication issue of "The Journal of Clinical Investigation."

"Our findings indicate that the level of activity of the "ASNS" gene in the mesenchymal cells is key to protecting leukemic cells in the bone marrow from asparaginase," Campana said. "This insight will help researchers find ways to disrupt this safe haven for leukemic cells that need asparagine," added James R. Downing, M.D., St. Jude scientific director and chair of the Pathology department. Downing is a co-author of "The Journal of Clinical Investigation" paper. The "ASNS" gene controls production of the enzyme asparagine synthetase (ASNS), which leukemic cells use to make asparagine.

The study’s findings also suggest that drugs now being developed to block ASNS should be tested to see if they also prevent mesenchymal cells from making this amino acid. In addition, the ability of mesenchymal cells to make asparagine might be decreased by cancer drugs that are already known to disrupt the activity of those cells.

"Because asparaginase is so widely used to treat ALL, this new insight into how mesenchymal cells protect leukemic cells is very important," said Ching-Hon Pui, M.D., chair of the Oncology department and American Cancer Society Professor at St. Jude. "The more we learn about the molecular interactions between these cells, the more likely we’ll be able to enhance the anti-leukemic action of asparaginase and perhaps other anti-leukemic drugs as well," said Pui, a co-author of the paper. "That would reduce the recurrence rate of ALL and continue our successful efforts to increase the survival rate of ALL."

Previous research at St. Jude and elsewhere had shown that direct contact with bone marrow mesenchymal cells is essential for the long-term survival and multiplication of leukemic lymphoblasts. In the current study, the team found that the gene for ASNS was more than 20 times active in producing this enzyme in mesenchymal cells than in ALL cells.

Experiments performed by co-authors Shotaro Iwamoto, M.D., and Keichiro Mihara, postdoctoral fellows in Campana’s laboratory, demonstrated that ALL cells from different patients became much more resistant to asparaginase when cultured on top of a layer of mesenchymal cells. In order to determine whether it was the high levels of asparagine released by mesenchymal cells that protected ALL cells from asparaginase, the St. Jude team repeated the experiment, but blocked the ability of mesenchymal cells to make the ASNS enzyme and produce asparagine. In this case, the protective effect of mesenchymal cells was eliminated. Conversely, when the researchers caused the ASNS gene to work overtime making asparagine, the ability of the mesenchymal cells layer to protect the ALL cells was significantly enhanced. The team also showed that the more actively "ASNS" genes produced ASNS in mesenchymal cells, the higher levels of asparagine they released.

Source: St. Jude Children's Research Hospital

Explore further: Recombinant peptide for transplantation of pancreatic islets in mice models of diabetes

add to favorites email to friend print save as pdf

Related Stories

Italian olive tree disease stumps EU

7 hours ago

EU member states are divided on how to stop the spread of a disease affecting olive trees in Italy that could result in around a million being cut down, officials said Friday.

Festo has BionicANTs communicating by the rules for tasks

7 hours ago

Germany-based automation company Festo, focused on technologies for tasks, turns to nature for inspiration, trying to take the cues from how nature performs tasks so efficiently. "Whether it's energy efficiency, ...

Jury decides Silicon Valley firm did not discriminate

8 hours ago

A jury decided Friday that a prestigious venture capital firm did not discriminate or retaliate against a female employee in a case that shined a light on gender imbalance and working conditions for women ...

Intel in talks with Altera on tie-up

8 hours ago

US tech giant Intel is in talks with rival Altera on a tie-up to broaden the chipmaker's product line amid growth in Internet-connected devices, the Wall Street Journal reported Friday.

Recommended for you

Novel nanoparticle therapy promotes wound healing

Mar 26, 2015

An experimental therapy developed by researchers at Albert Einstein College of Medicine of Yeshiva University cut in half the time it takes to heal wounds compared to no treatment at all. Details of the therapy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.