Scientists question our understanding of the universe

Mar 22, 2007
Scientists question our understanding of the universe

Cosmologists from around the world will meet at Imperial College London next week to challenge the theories behind the 'standard model' used to understand the universe. Speakers at the four-day conference, jointly organised by Imperial and the University of Alabama in Huntsville, and sponsored by the U.S. National Science Foundation, will cover a wide range of unanswered questions on how the universe was formed and what has been happening to it after formation.

The 'Standard Cosmological Model' is the prevailing scientific theory used to explain how the universe began with the Big Bang, how it has evolved since, and how the known atoms and molecules of everyday life, along with the postulated unknowns of the universe - dark matter and dark energy – interact with each other. Speakers at Imperial's Outstanding Questions for the Standard Cosmological Model conference will present an overview of evidence for and against this model, and will look at how to probe questions that it leaves unaddressed.

The conference will begin with key NASA observations of the cosmic microwave background, believed to be the afterglow of the Big Bang and still held as the most important piece of evidence supporting the standard model. Shaun Cole from Durham and Robert Nichol from Portsmouth will then present further supporting evidence by looking at how matter distributes across the universe in accordance with predictions of the model. This will be followed by John Cowan from Oklahoma, who will show how measurements on the age of the oldest stars led to agreement with one more prediction of the standard model – on the age of the universe.

Another important number that favours the model, namely the expansion rate of the universe (known as the Hubble constant), will be presented by Massimiliano Bonamente from Huntsville, who used Chandra satellite X-ray observations in conjunction with the technique of radio interferometry to determine this number.

In spite of the aforementioned successes, there are many scientists who feel that problems remain with the standard cosmological model. Lawrence Krauss from Case Western University and Subir Sarkar from Oxford query whether we need to postulate the existence of dark energy in the universe to explain the key observations. Tom Shanks from Durham will pose a puzzling question concerning why the instruments that measured the cosmic microwave background failed to detect shadows on this 'afterglow' radiation cast by nearby clusters of galaxies. This calls into question a key part of the standard model, which clearly predicted that such shadows should be formed, and be readily detectable.

Another vital prediction not observationally verified concerns the evolution of clusters of galaxies. While theory predicts that these systems should be rapidly evolving, the X-ray data presented by Alain Blanchard from Toulouse shows a complete absence of evolution. Additionally, Jelle Kaastra from Utrecht and Niayesh Afshordi from Harvard will demonstrate how the amount of atoms and molecules of daily life falls short of that predicted by the standard model by at least 30-40 percent.

One example of the debate at this conference is the talks of Drs Kate Land from Oxford and Carlo Contaldi from Imperial College London. After Dr Land presents her 'axis of evil', or odd alignment of structures in the cosmic microwave background, Dr Contaldi will offer a possible explanation of these alignments in terms of the process of inflation – a phase of rapid space expansion during the early universe, which is also one of the key tenets of the standard model.

Another conference speaker will be Dr Andrew Jaffe from Imperial, who will speak about the work he and his former PhD student Anastasia Niarchou have been carrying out on the topology of the universe. Topology is an extension of geometry which deals with not only shape, but the structure and nature of space which may enable us to "look in one direction and see light coming from an entirely different direction." Dr Jaffe contends that current cosmological data finally allow us to see far enough away to begin to look for these effects.

The four day event will be wrapped up by two summary speakers, Albert Stebbins from Fermilab and Richard Lieu from the University of Alabama in Huntsville, respectively the co-chair and chair of the scientific committee of this conference.

For a full programme of events, please go to: plato.tp.ph.ic.ac.uk/conferences/cosmolo gy/

Source: ICL

Explore further: Universe may face a darker future

add to favorites email to friend print save as pdf

Related Stories

Meiotic cell division 'the other way round'

17 hours ago

Meiosis is not like another: Gabriela Cabral and Peter Schlögelhofer at the Max F. Perutz Laboratories (MFPL) of the University of Vienna and the Medical University of Vienna dived into the process of meiosis ...

Clean smell doesn't always mean clean air

17 hours ago

Some of the same chemical reactions that occur in the atmosphere as a result of smog and ozone are actually taking place in your house while you are cleaning. A researcher in Drexel's College of Engineering ...

Air Umbrella R&D evolves as shield from pelting rain

Oct 15, 2014

A Chinese R&D team have invented an Air Umbrella which can blast water away from the umbrella's owner. They explain how their invention deflects rain: "Air is everywhere on the earth. The flowing air can ...

Recommended for you

A new generation of storage—ring

19 hours ago

A bright synchrotron source that emits over a wide part of the electromagnetic spectrum from the infrared to hard X-rays is currently being built in Lund, Sweden. The MAX IV facility presents a range of technical ...

Universe may face a darker future

22 hours ago

New research offers a novel insight into the nature of dark matter and dark energy and what the future of our Universe might be.

High-intensity sound waves may aid regenerative medicine

Oct 30, 2014

Researchers at the University of Washington have developed a way to use sound to create cellular scaffolding for tissue engineering, a unique approach that could help overcome one of regenerative medicine's ...

Formula could shed light on global climate change

Oct 30, 2014

Wright State University researchers have discovered a formula that accurately predicts the rate at which soil develops from the surface to the underlying rock, a breakthrough that could answer questions about ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.