Enceladus geysers mask the length of Saturn's day

Mar 22, 2007
Enceladus geysers mask the length of Saturn's day
Geysers on Saturn's little moon Enceladus are throwing off Saturn's internal clock, making it hard to measure the length of Saturn's day. Credits: NASA

In a David and Goliath story of Saturnian proportions, the little moon Enceladus is weighing down giant Saturn’s magnetic field so much that the field is rotating slower than the planet. This phenomenon makes it nearly impossible to measure the length of the Saturn day using techniques that work at the other giant planets.

“No one could have predicted that the little moon Enceladus would have such an influence on the radio technique that has been used for years to determine the length of the Saturn day,” said Dr. Don Gurnett of the University of Iowa, Iowa City. Gurnett is the principal investigator on the radio and plasma wave science experiment onboard NASA's Cassini spacecraft. The radio technique measures the rotation of the planet by taking its radio pulse rate - the rhythm of natural radio signals from the planet.

Enceladus geysers mask the length of Saturn's day
The image of Saturn's rings was taken with the Cassini wide-angle camera on 14 December 2004. It was taken at a distance of approximately 654 000 kilometres from Saturn through a filter sensitive to wavelengths of infrared light centred at 728 nanometres. The image scale is 35 kilometres per pixel. Credits: NASA/JPL/Space Science Institute

A new study of Cassini data, reported this week in the online version of the journal Science, determined that Saturn’s magnetic field lines - invisible lines originating from the interior of a magnetized planet - are being forced to slip relative to the rotation of the planet by the weight of electrically charged particles originating from geysers spewing water vapor and ice from Enceladus. These results are based on joint observations by two Cassini instruments - the radio and plasma wave instrument (RPWS) and the magnetometer (MAG).

The neutral gas particles ejected from the geysers on Enceladus form a donut-like torus around Saturn. As these particles become electrically charged, they are captured by Saturn’s magnetic field, forming a disc of ionized gas, or plasma, which surrounds the planet near the equator. The particles weigh down the magnetic field so much that the rate of rotation of the plasma disc slows down slightly. This slippage causes the radio period, controlled by the plasma disc rotation, to be longer than the planet's actual rotation period.

Scientists conclude the period Cassini has been measuring from radio emission is not the length of the Saturn day, but rather the rotation period of the plasma disc. At present, because of Saturn’s cloud motion, no technique is known that can accurately measure the planet's actual internal rotation.

Finding out the length of Saturn’s day has been a challenge because the gaseous planet has no surface or fixed point to clock its rotation rate. Initially, the approach was to use periodic regular radio signals, as has been done for Jupiter, Uranus and Neptune. However, Saturn’s radio period has turned out to be troubling in two ways.

It seems to be a pulsed signal rather than a rotating, lighthouse-like beam. Secondly, the period seems to be slowly changing over months to years. The day measured by Cassini is some six minutes longer than the day recorded by NASA’s Voyager spacecraft in the early 1980s, a change of nearly one percent.

“We have linked the pulsing radio signal to a rotating magnetic signal. Once each rotation of Saturn's magnetic field, an asymmetry in the field triggers a burst of radio waves,” said Prof. David Southwood, co-author, Imperial College London, and Director of Science at the European Space Agency. "We have then linked both signals to material that has come from Enceladus.”

Based on the new observations, scientists now think there are two possible reasons for the change in radio period. The first theory is that the geysers on Enceladus could be more active now than in Voyagers’ time. The second is that there may be seasonal variations as Saturn orbits the sun once every 29 years.

“One would predict that when the geysers are very active, the particles load down the magnetic field and increase the slippage of the plasma disc, thereby increasing the radio emission period even more. If the geysers are less active, there would be less of a load on the magnetic field, and therefore less slippage of the plasma disc, and a shorter period,” said Gurnett.

"The direct link between radio, magnetic field and deep planetary rotation has been taken for granted up to now. Saturn is showing we need to think further," said Michele Dougherty, principal investigator on Cassini’s magnetometer instrument, Imperial College London.

Source: ESA

Explore further: Computers beat brainpower when it comes to counting stars

add to favorites email to friend print save as pdf

Related Stories

Research group to study interstellar molecules

Apr 11, 2014

From April 2014, a new group will study interstellar molecules and use them to explore the entire star and planet formation process at the Max Planck Institute for Extraterrestrial Physics. Newly appointed ...

NASA's latest smartphone satellite ready for launch

Mar 14, 2014

(Phys.org) —NASA's preparing to send its fifth in a series of smartphone-controlled small spacecraft into orbit. PhoneSat 2.5 will ride into space as part of the SpaceX-3 commercial cargo resupply mission ...

A new way to measure Earth's magnetosphere

Jan 04, 2012

US researchers have demonstrated the potential use of a new way to measure properties of Earth's magnetosphere, the magnetic bubble that surrounds the planet.

Recommended for you

A sharp eye on Southern binary stars

12 hours ago

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...

Hubble image: A cross-section of the universe

12 hours ago

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Cosmologists weigh cosmic filaments and voids

16 hours ago

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

User comments : 0

More news stories

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...