Scientists identify a gene that may suppress colorectal cancer

Mar 22, 2007

In today’s online edition of Genome Research, a husband-and-wife research team from Thomas Jefferson University report the discovery of a gene that, when mutated, may suppress colorectal cancer. To conduct the study, the researchers used a strain of mice that develop polyps, or small growths of tissue, in the digestive tract—the harbingers of cancer. When these mice possessed one copy of the mutated gene, the incidence of small intestinal and colon polyps were reduced by about 90%.

“This gene may give us a novel target to aid in the diagnosis, prevention, and/or treatment of cancer,” says Dr. Arthur Buchberg, one of the co-senior authors on the report.

The gene is called Atp5a1, and encodes an essential component of the cell’s energy-production machinery. Mice with two copies of mutated Atp5a1 die early in embryonic development—probably due to insufficient energy. The identification of a gene critical for energy production in the cell opens up an array of potential new targets for therapy.

The research team identified a duplication of DNA—only four bases in length—in a critical part of the Atp5a1 gene. This mutation, which results in decreased levels of Atp5a1 gene expression, is the first mutation identified in the mouse Atp5a1 gene. In trypanosomes (tiny parasitic protozoa that cause African sleeping sickness), the loss of Atp5a1 gene function leads to death. To date, no mutations in the human ATP5A1 gene have been identified—further supporting its essential role in the cell.

“In humans, ATP5A1 is located on chromosome 18, in a region that often exhibits genetic alterations in colon tumors,” says Dr. Linda Siracusa, the other co-senior investigator on the project. “A better understanding of the biological function of ATP5A1 will provide insights concerning its potential role in human cancer.”

Colorectal cancer is currently ranked as the second leading cause of cancer death in the United States. But scientific progress in cancer research is challenged by the array of environmental and genetic influences on tumor initiation, development, and progression in the human population. Therefore, scientists have turned to mouse models, which have nearly identical genetic backgrounds and are housed in controlled conditions.

The scientists used a strain of mice called Min (multiple intestinal neoplasia). Min mice carry mutations in the Apc gene, which causes the development of intestinal tumors. Inactivation of the corresponding gene (APC) in humans is considered a key event in the development of colorectal cancer.

Tumor development is regulated by modifier genes, which may function to enhance or suppress tumor initiation, growth and/or progression. Atp5a1 is a modifier gene, and it is located on the same chromosome as Apc in mice. Interestingly, the results suggest that the mutant Atp5a1 gene caused the death of tumor cells, primarily when it was present on the same chromosome as the mutant Apc gene.

Source: Cold Spring Harbor Laboratory

Explore further: Innovative 'genotype first' approach uncovers protective factor for heart disease

add to favorites email to friend print save as pdf

Related Stories

Affirmative action elicits bias in pro-equality Caucasians

21 minutes ago

New research from Simon Fraser University's Beedie School of Business indicates that bias towards the effects of affirmative action exists in not only people opposed to it, but also in those who strongly endorse equality.

Economical and agile offshore construction ship

31 minutes ago

Siemens is currently installing the power supply and propulsion systems into a new multi-purpose offshore construction ship for Toisa Ltd. The ship, which is being built by the Korean company Hyundai Heavy ...

Rising temperatures can be hard on dogs

11 minutes ago

The "dog days of summer" are here, but don't let the phrase fool you. This hot time of year can be dangerous for your pup, says a Kansas State University veterinarian.

Recommended for you

Study clarifies parents as source of new disease mutations

12 hours ago

Scientists have long speculated that mosaicism – a biological phenomenon, in which cells within the same person have a different genetic makeup – plays a bigger role in the transmission of rare disease mutations than ...

How black truffles deal with the jumpers in their genome

22 hours ago

The black truffle uses reversible epigenetic processes to regulate its genes, and adapt to changes in its surroundings. The 'methylome' - a picture of the genome regulation taking place in the truffle, is published in the ...

Gene research targets scarring process

Jul 28, 2014

Scientists have identified three genes that may be the key to preventing scar formation after burn injury, and even healing existing scars.

User comments : 0