Controls engineer wins NSF CAREER Award to advance the viability of nuclear fusion

Mar 21, 2007

Few emerging technologies make claims that are as grand as the promises of nuclear fusion. Few, however, will require as much time and effort before they come to fruition.

Nuclear fusion – the process of joining isotopes of hydrogen under extremely high temperatures – has the potential to provide unlimited supplies of clean, safe energy, says Eugenio Schuster. Fusion emits no pollutants, greenhouse gases, plutonium or uranium waste. It uses such a small amount of fuel that there is no danger of a leak on a deadly scale. In contrast to present nuclear power plants, a nuclear accident is not possible in a fusion reactor, says Schuster.

And unlike the energy from fossil fuel sources, energy from nuclear fusion lies beyond the reach of politics or geography.

There’s just one catch: It will take engineers and scientists decades more of research and experiments to make fusion commercially viable.

Much of that research is aimed at developing engineering systems to monitor and control the volatile dynamics inside a fusion reactor, where, under temperatures greater than those inside the sun, hydrogen is converted from a gas to a plasma, or ionized gas, consisting of free electrons and protons. The plasma, which is confined by magnetic fields, is susceptible to a variety of instabilities.

Schuster, an assistant professor of mechanical engineering and mechanics, is at the forefront of the fusion effort. He recently received a five-year, $400,000 CAREER Award from the National Science Foundation (NSF) titled “Nonlinear Control of Plasmas in Nuclear Fusion.” The CAREER Award recognizes young researchers’ commitment to research and teaching. Schuster also receives support for fusion research from the Pennsylvania Infrastructure Technology Alliance.

Schuster began studying fusion controls seven years ago as a graduate student at the University of California at San Diego. In 2005, he helped edit two special editions of the IEEE Control System Magazine dealing with fusion. In 2006, he received an NSF grant to organize a workshop on the mathematical modeling and control of fusion. Also in 2006, he organized a session on fusion at IEEE’s top annual controls conference.

At Lehigh, Schuster works with two of the world’s leading fusion experts, Prof. Arnold Kritz and research scientist Glenn Bateman, of the department of physics. Kritz has studied fusion for 40 years, collaborates with researchers around the world and has monitored fusion research grants for the Office of Fusion Energy Science in the U.S. Department of Energy (DOE). The three Lehigh researchers have close ties to the three major U.S. fusion research centers – General Atomics in San Diego, the Princeton Plasma Physics Laboratory, and MIT’s Plasma Science and Fusion Center.

* * *

Control, in engineering terms, pertains to changing the dynamics of a system, especially an unstable system. The components of a control system include sensors, a feedback loop and actuators. The cruise control in a car, for example, uses a sensor to check the actual speed of a car against the desired speed. The actuator – gas pedal or regulating valve – controls the flow of gas to the engine to accelerate or decelerate as needed.

Vastly more complex than a cruise control is the control system needed to optimize a nuclear fusion reactor. Inside the tokamak, as the reactor is called, two isotopes of hydrogen, tritium and deuterium, fuse under high pressure and at temperatures of 100 million degrees Celsius to create helium atoms. Under the right conditions, this process becomes self-sustaining and produces energy continuously and in large quantities.

In the past 50 years, says Schuster, scientists have learned how plasmas behave under extreme conditions. Their goal now is to make a commercially viable fusion reactor that will produce at least five or 10 times as much energy as the amount of energy required to heat the tokamak and generate fusion.

Toward that end, the European Union, the U.S., China, Russia, Japan, India and South Korea are building a giant fusion reactor in France called ITER, formerly an acronym for International Thermonuclear Experimental Reactor and also a Latin word meaning “the way.” ITER will cost $10-billion and take 10 years to build.

“For a fusion researcher, these are really exciting times,” says Schuster. “ITER is the biggest scientific endeavor in the history of humankind, a product of 50 years of work with 30 years more to come. Scientists from around the world are pushing in the same direction to make fusion a reality.

“ITER will be the first tokamak to actually generate more fusion than input power. Until now, tokamaks have been used to heat the hydrogen isotopes and to generate and confine the resulting plasma in order to study the plasma’s instabilities and other physics issues related to the plasma.”

The key to generating a higher ratio of fusion energy to input energy, says Schuster, is to develop active control systems that maintain a self-sustaining fusion reaction for lengthy durations. These systems will need to regulate the density, current and temperature of the plasma and its stable confinement inside the magnetic fusion reactor. The shape of the fusion reactor and the material of which it is made are also important variables for control engineers.

“Tokamaks are high-order, nonlinear systems with a large number of instabilities,” says Schuster. “Many extremely challenging mathematical modeling and control problems must be solved before a fusion power system can become a viable entity.”

In his CAREER research, Schuster will tackle several critical challenges in the control of fusion reactors, including stabilization of neoclassical tearing modes, current profile control, and stabilization of resistive wall modes.

Schuster, whose expertise is in nonlinear controls, became interested in control systems in Argentina, where he earned a degree in electronic engineering from the University of Buenos Aires and a degree in nuclear engineering from the prestigious Balseiro Institute. At Lehigh, his graduate students have completed research internships at General Atomics and are beginning research projects at Princeton and MIT.

Schuster is not at all discouraged by the fact that he will most likely be an old man before the promise of fusion is realized.

“I’m very confident that we will succeed,” he says. “This will be something I can tell my grandchildren about.”

Source: Lehigh University

Explore further: Using antineutrinos to monitor nuclear reactors

add to favorites email to friend print save as pdf

Related Stories

Generations of supercomputers pin down primordial plasma

Apr 01, 2014

(Phys.org) —Supercomputers are constantly evolving to meet the increasing complexity of calculations ranging from global climate models to cosmic inflation. The bigger the puzzle, the more scientists and ...

A promising concept on the path to fusion energy

Mar 31, 2014

(Phys.org) —Completion of a promising experimental facility at the U.S. Department of Energy's Princeton Plasma Laboratory (PPPL) could advance the development of fusion as a clean and abundant source of ...

Physics: A fundamental force for future security

Feb 13, 2014

What is matter? What is energy? What holds matter together? How do the various constituents of the universe interact at the most basic level? Where does the Earth sit in relation to the rest of the universe? ...

Recommended for you

Using antineutrinos to monitor nuclear reactors

22 minutes ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Imaging turns a corner

4 hours ago

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.

Mapping the road to quantum gravity

18 hours ago

The road uniting quantum field theory and general relativity – the two great theories of modern physics – has been impassable for 80 years. Could a tool from condensed matter physics finally help map ...

User comments : 0

More news stories

Bake your own droplet lens

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost ...

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

How do liquid foams block sound?

Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. CNRS physicists working in collaboration with teams from Paris Diderot and Rennes ...