DNA layer reduces risk of reserve parts being rejected

Mar 20, 2007
DNA layer reduces risk of reserve parts being rejected
Layer-by-Layer deposition technique. With this technique, ultra-thin DNA layers can be built up and immobilized. The first layer attaches to the surface by means of adsorption. The subsequent layers remain in place due to electrostatic interactions. This makes it possible to build up multiple layers with opposite charges. Step 1 positively charged particles, Step 2 washing stage, Step 3 negatively charged particles (DNA), Step 4 washing stage. Credit: NWO

Dutch researchers Jeroen van den Beucken and John Jansen have given body implants a DNA layer. This layer ensures a better attachment, more rapid recovery of the surrounding tissue and less immune responses. The older we get the more 'reserve-parts' we need. Up until now placing such parts yielded advantages, but also disadvantages such as inflammations and immune responses. Van den Beucken's invention makes it easier and more reliable to use implants and has already been patented.

Van den Beucken reasoned that a DNA coating should have a lot of advantages. Such a coating approximates the body's own material with the result that a less intense immune response occurs. Further DNA is rich in phosphate groups that can speed up the attachment to bone tissue and therefore the integration of bone implants in the native bone tissue. Finally, DNA can be enriched with biologically active factors that, for example, facilitate the formation of bone tissue and blood vessels. All in all, a DNA coating could be safe, reduce the immune response, facilitate bone attachment and be functionalisable.

However, enzymes in the body will quickly break down a DNA coating. A method therefore had to be found to firmly attach the DNA to the implant surface. Van den Beucken used the Layer-by-Layer deposition technique (see Figure 1) to produce a multilayer coating. This coating was tested in cell cultures and animal experiments for its safety, immune response, bone attachment and functionalisation. The DNA layer was also found to speed up the deposition of calcium phosphate and could, for example, be adapted to promote bone and blood vessel formation. The good research results led to the patenting of DNA coatings for implants. A biomedical company is currently investigating whether they can take over the patent.

Following this successful result, Van den Beucken will investigate whether DNA layers can be used for the application of DNA membranes to prevent post-operative adhesions, and in biosensors such as an implanted glucose sensor for diabetic patients.

Source: NWO

Explore further: Key milestone for brown fat research with a ground-breaking MRI scan

add to favorites email to friend print save as pdf

Related Stories

How the cheetah got its stripes—a genetic tale

Sep 20, 2012

Feral cats in Northern California have enabled researchers to unlock the biological secret behind a rare, striped cheetah found only in sub-Saharan Africa, according to researchers at the Stanford University ...

Mummy mysteries unraveled with high tech help

Aug 20, 2012

Australian nuclear scientists are helping an international team of archaeologists and historians to unravel a mystery about a collection of Egyptian mummies prone to cross dressing and lying about their gender ...

Recommended for you

New pain relief targets discovered

3 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

4 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

Proper stem cell function requires hydrogen sulfide

7 hours ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

User comments : 0

More news stories

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...

Our brains are hardwired for language

A groundbreaking study published in PLOS ONE by Prof. Iris Berent of Northeastern University and researchers at Harvard Medical School shows the brains of individual speakers are sensitive to language univer ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...