Gallium: A new antibacterial agent?

Mar 16, 2007

New antibacterial strategies are needed because more and more bacteria are antibiotic resistant and because antibiotics are not effective at eradicating chronic bacterial infections. One approach to developing new antibacterial strategies, taken by researchers from the University of Washington, Seattle, is to limit the amount of iron (Fe), which is critical for bacterial growth, to which bacteria have access.

In the study, which appears online on March 15 in advance of publication in the April print issue of the Journal of Clinical Investigation, Pradeep Singh and colleagues show that Gallium (Ga), which is chemically similar to Fe and can disrupt biological systems by substituting for Fe, inhibits the in vitro growth of Pseudomonas aeruginonsa; even multidrug resistant strains of P. aeruginonsa isolated from individuals with cystic fibrosis. Ga also prevented P. aeruginonsa forming biofilms, the multi-cellular bacterial communities responsible for chronic bacterial infections, and killed both free-living bacteria and bacteria in biofilms.

Furthermore, inhalation of Ga protected mice from both acute and chronic P. aeruginonsa lung infections. As Ga is already FDA approved for the treatment of hypercalcemia of malignancy, these data suggest that Ga might be a promising new therapeutic for the treatment of infection with P. aeruginonsa, a major cause of infection in individuals with cystic fibrosis and of infection acquired in hospital.

Source: Journal of Clinical Investigation

Explore further: Mice study shows efficacy of new gene therapy approach for toxin exposures

add to favorites email to friend print save as pdf

Related Stories

Magnetic memories on the right track

17 minutes ago

Computer hard drives store data by writing magnetic information onto their surfaces. In the future, magnetic effects may also be used to improve active memory in computers, potentially eliminating the need ...

Recommended for you

How Alzheimer's peptides shut down cellular powerhouses

Aug 29, 2014

The failing in the work of nerve cells: An international team of researchers led by Prof. Dr. Chris Meisinger from the Institute of Biochemistry and Molecular Biology of the University of Freiburg has discovered ...

User comments : 0