SMART-1 uses new imaging technique in lunar orbit

Dec 23, 2005
SMART-1 uses new imaging technique in lunar orbit
Image: The AMIE camera on board SMART-1 has three fixed-mounted filters which see the Moon in different colour bands. The figure shows four consecutive images taken by AMIE from left to right. The fixed filters are indicated by coloured frames. The images, taken only a few seconds apart, show how the surface is moving through the different filters. Credits: AMIE Team

ESA’s SMART-1 spacecraft has been surveying the Moon’s surface in visible and near-infrared light using a new technique, never before tried in lunar orbit.

For the last few months, the Advanced Moon Imaging Experiment (AMIE) on board SMART-1, has been opening new ground by attempting multi-spectral imaging in the ‘push-broom’ mode. This technique is particularly suited to colour imaging of the lunar surface. (Note that ‘colour imaging’ here does not mean natural colour, the colour bands of the AMIE filters are in the infrared region and are selected such that the intensity of the iron absorption line can be determined from brightness ratios of the images.)

In this mode, AMIE takes images along a line on the Moon’s surface perpendicular to the ground track of the spacecraft.

It relies on the orbital motion of the spacecraft to reposition it as it records a sequence of images known as an ‘image swath’.

The AMIE camera on board SMART-1 has fixed-mounted filters which see the Moon in different colour bands. The figure shows four consecutive images taken by AMIE from left to right. The fixed filters are indicated by coloured frames.

The images, taken only a few seconds apart, show how the surface is moving through the different filters. The spacecraft is moving over the Moon’s surface at a speed of more than a kilometre per second!

SMART-1 uses new imaging technique in lunar orbit

By combining images showing the same feature on the Moon as seen through different filters, colour information can be obtained. This allows to study the mineralogical composition on the lunar surface, which in turn lets scientists deduce details of the formation of our celestial companion.

Whereas the multi-spectral camera aboard the US Clementine mission had constant illumination conditions, SMART-1's orbit will offer different viewing angles. AMIE's views correlated with Clementine data of the same lunar areas will allow scientists to better interpret such spectral data.

Source: ESA

Explore further: Image: NGC 6872 in the constellation of Pavo

add to favorites email to friend print save as pdf

Related Stories

European eyes on a Californian earthquake

Sep 04, 2014

The European Space Agency (ESA) recently captured stunning images of the earthquake that occurred in California's Napa Valley region on August 24, 2014. The earthquake was the largest to rattle northern California ...

Sentinel-1 poised to monitor motion

Aug 27, 2014

Although it was only launched a few months ago and is still being commissioned, the new Sentinel-1A radar satellite has already shown that it can be used to generate 3D models of Earth's surface and will ...

Forces of martian nature

Jul 11, 2014

The surface of Mars is pocked and scarred with giant impact craters and rocky ridges, as shown in this new image from ESA's Mars Express that borders the giant Hellas basin in the planet's southern hemisphere.The ...

Shaken, not stirred – mythical god's capsules please

Jun 26, 2014

Everything depends on how you look at them. Looking from one side you will see one face; and when looking from the opposite side – you will see a different one. So appear Janus capsules, miniature, hollow ...

Recommended for you

Image: NGC 6872 in the constellation of Pavo

1 minute ago

This picture, taken by the NASA/ESA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused ...

Measuring the proper motion of a galaxy

41 minutes ago

The motion of a star relative to us can be determined by measuring two quantities, radial motion and proper motion. Radial motion is the motion of a star along our line of sight. That is, motion directly ...

How ancient impacts made mining practical

1 hour ago

About 1.85 billion years ago, in what would come to be known as Sudbury Canada, a 10 kilometer wide asteroid struck with such energy that it created an impact crater 250 kilometers wide. Today the chief industry of Sudbury ...

Indian spacecraft on course to enter Mars' orbit

1 hour ago

With home-grown technology and a remarkably low budget of about $75 million, India was on course to become the first nation to conduct a successful Mars mission on its first try.

User comments : 0