New technology shows old faults are smoother than young ones

Mar 12, 2007
New technology shows old faults are smoother than young ones
The LIDAR instrument (foreground) scans an exposed fault, measuring its topography in great detail. Photo by A. Sagy

Old earthquake faults appear to be smoother than young ones, worn smooth over time by friction like the brake pads of an old car.

That's one of the most striking insights of a new study by geologists at the University of California, Santa Cruz. Published in the March 2007 issue of Geology, the study shows the structure of mature faults differs significantly from that of young faults.

Emily Brodsky, assistant professor of Earth and planetary sciences, and postdoctoral researcher Amir Sagy used a new tool to create extraordinarily detailed topographical maps of the vertical sides of exposed fault lines. Their findings suggest that the age of a fault may influence the nature of the earthquakes it generates.

The idea that old and young faults have fundamentally different structures is not new. In fact, the idea that faults evolve has been around a long time. But fault structure is very difficult to measure quantitatively, Brodsky said.

"They're all relatively smooth surfaces. Therefore, what you're looking for are relatively subtle differences between the mature and immature faults. To do that you need a really good tool," she said.

Brodsky found that really good tool in laser imaging detection and ranging (LIDAR), a technology that has emerged in the last three years. Like radar, LIDAR sends out a pulse of energy and then records information from the reflections that bounce back to it. Rather than using radio waves, as radar does, LIDAR uses pulses of high-energy light, making it more sensitive than radar.

Earlier geologists studying the structures of faults had to rely on measuring cliff profiles with tape measures and metal bars. Often, this entailed climbing around on sheer rock faces in rappelling gear for hours to collect a very few measurements.

"That's really hard to do. You work all day and you get ten data points measured. We sit there for about an hour with our equipment and we get about a million data points," Brodsky said.

LIDAR scans enormous rock faces from the ground, taking a data point as frequently as every three millimeters. The LIDAR machine, which looks like an oversized computer printer perched atop a yellow tripod, folds up to fit in a large crate for transport.

Because the LIDAR machine is not exactly handheld (it weighs 50 pounds), Brodsky and Sagy had to be choosy about the faults they measured. Sagy researched faults from Santa Cruz and then went on road trips to scan them. He looked for faults that were easily measured, with significant amounts of rock bare above the surface.

"I would connect with geologists who had found beautiful faults," Sagy said. "It had to be a relatively large surface, larger than two square meters. But it also needed to be a place that was easy to get to by car."

In the end, it took Sagy almost two years to collect and analyze the data for approximately 15 sites in southern California, Oregon, Nevada, and Utah. Both Sagy and Brodsky say the results clearly show that, on a small scale, older faults are smoother than young faults.

Although mature faults tend to be smooth at small scales, the study also found that they have regular features on larger scales. They're like gravel roads over which countless cars have driven: The gravel has been pounded down into a semblance of smoothness, but a washboard pattern has emerged. Younger faults tend to be rough on all scales with no discernible patterns, like a new gravel road with rocks poking at all angles.

"The thing that was really surprising was that the mature faults have a really distinct structure, little hills on them, at the 10 meter scale. That's very surprising, because most geologists thought they were fractal," Brodsky said.

Fault lines have been cited as examples of fractal geometry, exhibiting the same structure and complexity regardless of the scale of observation. Sagy said an earlier study on this question by other scientists hadn't found evidence to support the idea that fault lines are fractal, but the researchers had chalked up their failure to inadequate equipment. Now, however, their findings have been confirmed by the more powerful LIDAR technique.

"Their data suggested that it wasn't fractal, but they thought it was the fault of their instrument," Sagy said. "In fact, they were right from the beginning."

Because the two types of faults are so different, Brodsky says, everything about the earthquakes these faults produce should be different: their birth, strength, and propagation. What these differences are and how they occur still isn't clear. Brodsky and Sagy hope to use their new knowledge of faults to study how a fault's structure affects the earthquakes it generates.

"We don't know how the amount of shaking from the same size earthquake acts on different kinds of faults. It could be that the smoother, mature faults give you a less bumpy ride," Brodsky said. "The next step is to work out what these predictions mean for earthquakes."

Source: University of California, Santa Cruz

Explore further: Six Nepalese dead, six missing in Everest avalanche

add to favorites email to friend print save as pdf

Related Stories

Venture investments jump to $9.5B in 1Q

43 minutes ago

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.

White House updating online privacy policy

1 hour ago

A new Obama administration privacy policy out Friday explains how the government will gather the user data of online visitors to WhiteHouse.gov, mobile apps and social media sites. It also clarifies that ...

Scientists tether lionfish to Cayman reefs

1 hour ago

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Six Nepalese dead, six missing in Everest avalanche

1 hour ago

At least six Nepalese climbing guides have been killed and six others are missing after an avalanche struck Mount Everest early Friday in one of the deadliest accidents on the world's highest peak, officials ...

Recommended for you

Clean air: Fewer sources for self-cleaning

15 hours ago

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

There's something ancient in the icebox

15 hours ago

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Image: Grand Canyon geology lessons on view

22 hours ago

The Grand Canyon in northern Arizona is a favorite for astronauts shooting photos from the International Space Station, as well as one of the best-known tourist attractions in the world. The steep walls of ...

First radar vision for Copernicus

22 hours ago

Launched on 3 April, ESA's Sentinel-1A satellite has already delivered its first radar images of Earth. They offer a tantalising glimpse of the kind of operational imagery that this new mission will provide ...

User comments : 0

More news stories

Six Nepalese dead, six missing in Everest avalanche

At least six Nepalese climbing guides have been killed and six others are missing after an avalanche struck Mount Everest early Friday in one of the deadliest accidents on the world's highest peak, officials ...

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.