A jet of molecular hydrogen arising from a forming high-mass star

Mar 07, 2007
Left: Near-infrared image of the M17 silhouette disk, discovered in 2004. The field of view is 27"x27", which roughly corresponds to 60000 AU x 60000 AU (AU stands for astronomical units). Right: Zoom on the central region at six selected wavelengths. The pictures were obtained with SINFONI. Each panel has a field of view of 4.8"x3.6" (i.e. 10560 AU x 7920 AU). While panels (b), (d), and (f) show the densest inner part of the silhouette disk, panels (c) and (e) reveal the H2 jet (individual emission knots are labelled with A, B, and C).

A team of European astronomers offer new evidence that high-mass stars could form in a similar way to low-mass stars, that is, from accretion of gas and dust through a disk surrounding the forming star. Their article, published in Astronomy & Astrophysics, reports the discovery of a jet of molecular hydrogen arising from a forming high-mass star located in the Omega nebula (M17). This detection confirms the hypothesis based on their earlier discovery that this forming high-mass star is surrounded by a large accretion disk.

While astronomers now understand the overall process of low-mass star formation very well, the formation process of massive stars is still very much under debate. Recent astronomical observations suggest that high-mass stars could form through accretion processes, just like low-mass stars do. For instance, in 2004, European astronomers discovered a large accretion disk that probably surrounds a forming high-mass star, in the star-forming region M17, also known as the Omega nebula and located at a distance of about 7000 light years.

Looking again at M17 with the new spectrograph SINFONI at the ESO-VLT, the same European group report discovering a jet of molecular hydrogen (H2) that apparently arises from the forming high-mass star. The picture below illustrates this discovery, which is being published in Astronomy & Astrophysics.

The ejection of material through a jet or an outflow is always linked to accretion of gas and dust, either onto the circumstellar disk or onto the central protostar. The detection of the H2 jet thus provides evidence that ongoing accretion processes occur in the M17 disk. The team also estimates the mass outflow and mass accretion rates, which suggest that a star of high mass is forming within the M17 disk. This is an additional clue that high-mass stars form in a similar way to lower mass stars.

Source: Journal Astronomy & Astrophysics

Explore further: Telescopes hint at neutrino beacon at the heart of the Milky Way

add to favorites email to friend print save as pdf

Related Stories

NASA issues 'remastered' view of Jupiter's moon Europa

4 hours ago

(Phys.org) —Scientists have produced a new version of what is perhaps NASA's best view of Jupiter's ice-covered moon, Europa. The mosaic of color images was obtained in the late 1990s by NASA's Galileo ...

Dish restores Turner channels to lineup

4 hours ago

Turner Broadcasting channels such as Cartoon Network and CNN are back on the Dish network after being dropped from the satellite TV provider's lineup during contract talks.

LiquidPiston unveils quiet X Mini engine prototype

9 hours ago

LiquidPiston has a new X Mini engine which is a small 70 cubic centimeter gasoline powered "prototype. This is a quiet, four-stroke engine with near-zero vibration. The company said it can bring improvements ...

Recommended for you

Staying warm: The hot gas in clusters of galaxies

10 hours ago

Most galaxies lie in clusters, groupings of a few to many thousands of galaxies. Our Milky Way galaxy itself is a member of the "Local Group," a band of about fifty galaxies whose other large member is the ...

A colorful gathering of middle-aged stars

Nov 26, 2014

NGC 3532 is a bright open cluster located some 1300 light-years away in the constellation of Carina(The Keel of the ship Argo). It is informally known as the Wishing Well Cluster, as it resembles scattered ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.