Rare cell prevents rampant brain activity

Mar 02, 2007

One of the mysteries of the brain is how it avoids ending up in a state of chaos, something which happens only on exceptional occasions, when it can lead to epileptic fits. Scientists at Karolinska Institutet have now uncovered a new mechanism controlling how the brain keeps its neuronal activity in check.

The human brain consists of around a hundred million nerve cells linked together by around ten billion contact junctions called synapses. The activity of this extremely complex network is regulated through a dynamic balance between excitatory signals, which are transmitted by one type of synapse, and inhibitory counter-signals, which are transmitted by another.

An imbalance between excitatory and inhibitory activity is associated with diseases such as epilepsy, schizophrenia, and anxiety. But despite the fact that excitatory synapses are much more common than their inhibitory counterparts, the system is generally kept in a state of equilibrium. Just how the brain manages this feat is a puzzle to scientists.

Scientists at Karolinska Institutet and the Brain Mind Institute in Switzerland have now discovered a mechanism that might explain how the most common type of neuron in the cerebral cortex – the pyramid cell – is prevented from becoming over-activated. Their results show that a rarer cell type that links collections of pyramid cells – called a Martinotti cell –
acts as a kind of safety device. When a Martinotti cell receives signals above a certain frequency, it responds by sending back inhibitory signals that moderate surrounding pyramid cells.

Gilad Silberberg, one of the researchers behind the study, believes that the mechanism is essential to understanding brain disorders like epilepsy.

"A characteristic feature of epilepsy is the hyperactivation of cortical pyramid cells, which is exactly what this mechanism inhibits. It is possible that epilepsy is related to a deficit of Martinotti cells or a deficiency of Martinotti activity in the brain."

Source: Karolinska Institutet

Explore further: Investigators show how immune cells are 'educated' not to attack beneficial bacteria

Related Stories

OrangeSec pair said Cortana visited Android

5 hours ago

Can, did, Cortana work on Android? A talked-about act at droidcon 2015: a presentation titled "Cracking Cortana." The OrangeSec team arrived at the Turin, Italy, event to show their work in a CortanaProxy ...

Mercury MESSENGER nears epic mission end

7 hours ago

A spacecraft that carries a sensor built at the University of Michigan is about to crash into the planet closest to the sun—just as NASA intended.

DOJ, FBI acknowledge flawed testimony from unit

8 hours ago

The Justice Department and FBI have formally acknowledged that nearly every examiner in the FBI Laboratory's microscopic hair comparison unit gave flawed testimony in almost all trials in which they offered evidence against ...

Dawn glimpses Ceres' north pole

8 hours ago

After spending more than a month in orbit on the dark side of dwarf planet Ceres, NASA's Dawn spacecraft has captured several views of the sunlit north pole of this intriguing world. These images were taken ...

Recommended for you

Fat signals control energy levels in the brain

Apr 23, 2015

An enzyme secreted by the body's fat tissue controls energy levels in the brain, according to new research at Washington University School of Medicine in St. Louis. The findings, in mice, underscore a role ...

Human tape worm drug shows promise against MRSA in lab

Apr 23, 2015

A new study provides evidence from lab experiments that a drug already used in people to fight tapeworms might also prove effective against strains of the superbug MRSA, which kills thousands of people a ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.