'Finger rafting:' Ice sheets that mesh when they meet

Mar 02, 2007
Finger Rafting
Finger rafting is the block zippered pattern that forms when thin ice sheets floating on water collide creating 'fingers' that push over and under each other alternately. This photo was taken off the Antarctic coast. Credit: W.F. Weeks

A study reported in Physical Review Letters demonstrates how ice sheets sometimes interlace when they meet, rather than riding over or under each other, and discusses the implications for other phenomena from plate tectonics of the Earth's surface to the design of self-assembling nanostructures.

"A surprising pattern, much like the meshed teeth of a zipper, is frequently seen when floating ice sheets collide," said John Wettlaufer, professor of geology & geophysics and of physics at Yale. He and his colleague Dominic Vella of Cambridge University in England demonstrated the underlying principle for the observation. Further, they suggest that the process can work for any materials that share particular physical characteristics of thickness and flexibility.

"When two elastic sheets floating on a liquid collide, intuition leads us to expect one of two results — one sheet might be 'subducted' under the other, as we observe with the earth's crust, or the two might crush each other forming a field of rubble, as we observe in thick ice floes," said Wettlaufer.

The researchers describe a third possibility in their study published in Physical Review Letters. They show that sheets of ice, or in their experiments, sheets of wax, form a series of interlocking blocks -– termed "finger rafting" — that alternately ride over and under one another. It is a curiosity that has vexed scientists for over 50 years.

The natural patterns look like meter-wide rectangular zigzags, and only occur when both sheets of ice are roughly the same thickness. Their theoretical analysis was confirmed experimentally using flexible layers of wax on water to simulate the phenomenon. They demonstrated the relationship between the width of the resulting fingers and the material's mechanical properties.

"We show that this striking observation is a general and robust mechanical phenomenon that we can reproduce in the laboratory with floating materials other than ice," he said. "Our experimental results were consistent with the field observations."

According to Wettlaufer, the findings are relevant for a host of physical systems and, "The same principles might be used for designing nanomachine gears from appropriate materials." He points out that Tuzo Wilson, one of the founders of the theory of plate tectonics, was inspired by the resemblance of structures on floating polar ice sheets to the transform faults and other features of the Earth's moving plates.

Citation: Physical Review Letters 98, 088303 (February 23, 2007) DOI: 10.1103/PhysRevLett.98.088303

Source: Yale University

Explore further: With neutrons, scientists can now look for dark energy in the lab

add to favorites email to friend print save as pdf

Related Stories

Researchers decipher climate paradox from the Miocene

Apr 11, 2014

Scientists of the German Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), have deciphered a supposed climate paradox from the Miocene era by means of complex model simulations. ...

Great Lakes become nearly covered with ice

Feb 15, 2014

From the bridge of the Coast Guard cutter Mackinaw, northern Lake Huron looks like a vast, snow-covered field dotted with ice slabs as big as boulders—a battleground for the icebreaker's 58-member crew ...

A look back and ahead at Greenland's changing climate

Feb 06, 2014

(Phys.org) —Over the past two decades, ice loss from the Greenland Ice Sheet increased four-fold contributing to one-quarter of global sea level rise. However, the chain of events and physical processes ...

Recommended for you

How to test the twin paradox without using a spaceship

5 hours ago

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 0

More news stories