Treating male infertility with stem cells

Mar 02, 2007

New research has examined the usefulness of bone marrow stem cells for treating male infertility, with promising results. The related report by Lue et al, “Fate of bone marrow stem cells transplanted into the testis: potential implication for men with testicular failure,” appears in the March issue of The American Journal of Pathology.

When a couple experiences infertility, the man is just as likely as the woman to be the cause. Male infertility may arise from failed proliferation and differentiation of the germ cells (precursors of sperm) or from dysfunction of the supporting cells. New research is looking to stem cells as a means of replacing nonfunctioning cells, whether germ cells or supporting cells.

Researchers, directed by Dr. Ronald S. Swerdloff of the Harbor-UCLA Medical Center, collected bone marrow stem cells from mice expressing the green fluorescent protein (GFP). These green cells, which could be easily tracked in recipient mice, were injected into the testes of infertile mice, in which infertility was induced either chemically or genetically (via mutations in a gene required for sperm production).

The donor GFP-expressing cells took up residence in the testes and survived within the recipient mice for the entire 12-week study period. The donor stem cells displayed the characteristic shape of either germ cells or supporting cells, suggesting that the stem cells had differentiated. These differentiated donor (green) cells were also found near the native recipient cells of the same type, demonstrating that the local cellular environment likely influenced the fate of the donor stem cells.

As further confirmation of the differentiation status of the donor cells, the expression of specific proteins on the cell surface was examined. Both germ and supporting cells expressed marker proteins known to be found only on the differentiated cells, not on stem cells.

These data demonstrate that bone marrow stem cells have the potential to differentiate into cells of the testes involved in sperm production, both germ cells and supporting cells. Interestingly, the germ cells did not differentiate fully into sperm, suggesting that additional factors or cellular signals are needed.

Future studies will characterize the other factors, such as hormones, required to complete sperm production in this transplant model. In addition, since the bone marrow cells used here represent a mixed population of stem cells, further studies will determine which specific stem cell type was able to colonize and differentiate in the testes. The results of future studies could have dramatic implications for treating male infertility or testosterone deficiency.

Source: American Journal of Pathology

Explore further: Study finds enzyme inhibitors suppress herpes simplex virus replication

add to favorites email to friend print save as pdf

Related Stories

Ag-tech could change how the world eats

1 hour ago

Investors and entrepreneurs behind some of the world's newest industries have started to put their money and tech talents into farming - the world's oldest industry - with an audacious agenda: to make sure there is enough ...

World's rarest cetacean threatened by illegal gillnets

1 hour ago

The world's rarest cetacean could disappear in less than four years unless immediate action is taken by the Mexican government to protect it from entanglement in gillnets deployed illegally in its Gulf of California refuge, ...

Enviro-tracker is wearable for citizen monitoring

2 hours ago

Mobile hardware and software allow us to count our steps, and to count our calories, but a Vancouver, Canada, startup group asked, what about tracking our environment? TZOA was founded in 2013. Laura Moe, ...

In Curiosity Hacked, children learn to make, not buy

2 hours ago

With her right hand, my 8-year-old daughter, Kalian, presses the red-hot soldering iron against the circuit board. With her left hand, she guides a thin, tin wire until it's pressing against both the circuit board and the ...

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.