Delicate Relation between Single Spins

Mar 01, 2007
Delicate Relation between Single Spins
Artists view of the measurement set up with the metallic tip of the scanning tunnelling microscope on top of a chain made out of three cobalt adatoms on a copper surface. The bump to the left is a single cobalt atom. Credit: Max Planck Institute for Solid State Research

Probing the magnetic interaction between single atoms is no longer a dream. Using a scanning tunnelling microscope, the interaction of the spins of two neighbouring cobalt atoms adsorbed at a copper surface has been measured as a function of their distance with atomic precision. This development opens up new possibilities to probe the quantum nature of magnetic phenomena and to explore the physical limits of magnetic data storage.

It is a vision of information technology to store data in the smallest available units - single atoms - thus enabling the development of novel mass storage devices with huge capacities but compact dimensions. It is crucial to understand the mutual interaction and dynamics of individual spins, both for realising such a visionary device as well as to explore the limits of conventional mass storage media. New insights into these interactions can find direct application in the advancement of magnetic recording techniques as well as in the development of novel spin-based information technologies such as quantum computers.

Max-Planck researchers from Stuttgart and Halle in collaboration with colleagues from the CNRS in Grenoble have succeeded in accessing the interaction between single magnetic adatoms on a metal surface by comparing experimental results obtained with a scanning tunnelling microscope with a detailed theoretical analysis. The interaction between single magnetic adatoms has been theoretically analyzed already in the middle of last century and the predictions could now for the first time be compared with experiments on single atoms.

The metallic tip of a scanning tunnelling microscope passes over a conducting surface thereby giving access to an atomic scale height map. In order to measure the tiny magnetic effects, the researchers had to cool their microscope to low temperatures (-267°C or -448.6°F) and conduct the experiments in a vibration-isolated and sound-proof environment. The low temperature on the one hand freeze the motion of the atoms which enables the investigation of single atoms in the first place, on the other hand the spectroscopic resolution of the experiment is increased. The atomic arrangements in which the interactions have been studied were prepared by selectively dissociating single molecules containing cobalt atoms with the tip of the scanning tunnelling microscope.

As a probe for the magnetic interactions the researchers have exploited an electronic many body effect, the Kondo effect. This effect is due to the interaction of the spin of a magnetic adatom with the electrons of the metallic substrate. The effect can (at low temperatures) be detected by the scanning tunnelling microscope as resonance in the local electronic density of states. By a detailed analysis of the dependence of the Kondo resonance on the distance between two adjacent cobalt adatoms on a copper surface, the researchers were able to probe their magnetic interactions. This enabled for the first time a direct comparison of theoretical calculations for the magnetic interaction between single atoms on a metal surface with experimental data.
The researchers also observed a novel magnetic state for a chain of three cobalt adatoms, which is a correlated state of the spins of the three constituting atoms.

The results of the Max-Planck researchers are promising first steps toward developing new pathways for manipulating and engineering materials and nanostructures on the atomic scale by exploiting the quantum nature of magnetism. At the same time the results improve our understanding of the fundamental interactions between single spins.

Citation: P. Wahl, P. Simon, L. Diekhöner, V.S. Stepanyuk, P. Bruno, M.A. Schneider, and K. Kern, Exchange Interaction between Single Magnetic Adatoms, Phys. Rev. Lett. 98, 056601 (2007)

Source: Max Planck Institute for Solid State Research

Explore further: Information storage for the next generation of plastic computers

add to favorites email to friend print save as pdf

Related Stories

The science of anatomy is undergoing a revival

Apr 10, 2014

Only two decades ago, when I was starting my PhD studies at the University of California in Berkeley, there was talk about the death of anatomy as a research subject. That hasn't happened. Instead the science ...

The promise and peril of nanotechnology

Mar 26, 2014

Scientists at Northwestern University have found a way to detect metastatic breast cancer by arranging strands of DNA into spherical shapes and using them to cover a tiny particle of gold, creating a "nano-flare" ...

Recommended for you

How to test the twin paradox without using a spaceship

20 hours ago

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 0

More news stories

Progress in the fight against quantum dissipation

( —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

New clinical trial launched for advance lung cancer

Cancer Research UK is partnering with pharmaceutical companies AstraZeneca and Pfizer to create a pioneering clinical trial for patients with advanced lung cancer – marking a new era of research into personalised medicines ...

'Chief Yahoo' David Filo returns to board

Yahoo announced the nomination of three new board members, including company co-founder David Filo, who earned the nickname and formal job title of "Chief Yahoo."