Rosetta lander measures Mars' magnetic environment around close approach

Feb 26, 2007 byline
Rosetta lander measures Mars' magnetic environment around close approach
This graph, drawn thanks to data collected by the ROMAP instrument on board Rosetta's Philae lander, shows how the magnetic environment of Mars becomes complex when the solar wind, initially proceeding unperturbed at supersonic speed (left of the image), encounters the boundary region of the magnetosphere (bow shock), gets decelerated to subsonic speed and becomes turbulent. The data were collected around closest approach to the Red Planet during the Mars swingby on 25 February 2007. Time is ploted on the horizontal axis versus intensity of the magnetic field on the vertical axis. Credits: ROMAP / Philae / ESA Rosetta

In addition to acquiring incredible images of Mars during the planetary swingby earlier today, Rosetta and its lander Philae continue returning data from the Red Planet. The ROMAP instrument on board Philae measured the intensity of the peculiar magnetic field of Mars around closest approach.

Philae's ROMAP (Rosetta Lander Magnetometer and Plasma Monitor) instrument aims ultimately to study the local magnetic field of Comet 67P/Churyumov-Gerasimenko and examine the intensity of the magnetic interaction between the comet and the solar wind in three spatial dimensions ('3D').

The cometary magnetic environment is similar to that of Mars. Mars doesn't have a global planetary magnetic field protecting it from the solar wind. Its complex and 'disturbed' magnetic environment is – in very simplified terms - the result of the combination of the weak magnetosphere surrounding the planet, under continuous attack from the solar wind, with the local magnetic spots (anomalies) that characterise the planet's crust.

The graph presented in this article plots time on the horizontal axis versus intensity of the magnetic field on the vertical axis.
It shows how the magnetic environment of Mars becomes complex when the solar wind, initially proceeding unperturbed at supersonic speed (left of the image), encounters the boundary region of the magnetosphere (bow shock), gets decelerated to subsonic speed and becomes turbulent. The turbulence continues in the ‘tail’ of the planet’s magnetosphere (right of the image).

These measurements are very important as they show how well the ROMAP instrument is performing. This data set is also almost unique, as the trajectory that Rosetta followed during the Mars swingby is very different from those usually followed by other spacecraft orbiting Mars: only the Russian probe Phobos-2 provided a similar insight into the plasma environment around Mars from this special viewpoint in space.

Source: ESA

Explore further: Mercury MESSENGER nears epic mission end

Related Stories

Why can't we design the perfect spacesuit?

Feb 19, 2015

So far, every spacesuit humans have utilized has been designed with a specific mission and purpose in mind. As of yet, there's been no universal or "perfect" spacesuit that would fit every need. For example, ...

What makes the solar system interesting to astronomers?

Feb 17, 2015

While most of us are stuck on planet Earth, we're lucky enough to have a fairly transparent atmosphere. This allows us to look up at the sky and observe changes. The ancients noticed planets wandering across ...

Recommended for you

Mercury MESSENGER nears epic mission end

12 hours ago

A spacecraft that carries a sensor built at the University of Michigan is about to crash into the planet closest to the sun—just as NASA intended.

Dawn glimpses Ceres' north pole

14 hours ago

After spending more than a month in orbit on the dark side of dwarf planet Ceres, NASA's Dawn spacecraft has captured several views of the sunlit north pole of this intriguing world. These images were taken ...

A blueprint for clearing the skies of space debris

Apr 17, 2015

An international team of scientists have put forward a blueprint for a purely space-based system to solve the growing problem of space debris. The proposal, published in Acta Astronautica, combines a super-wide field-of-view telesc ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.