Swimming 'to the left' gets bacteria upstream, may promote infection

Feb 26, 2007

Yale engineers who study both flow hydrodynamics and how bacteria propel themselves report that one reason for the high incidence of infections associated with catheters in hospital patients may be that some pathogenic bacteria swim "to the left," in a study published in Physical Review Letters.

"Escherichia coli (E. coli) and some other pathogenic bacteria with flagella interact with the flow of liquid when they are near a surface," said Hür Köser, assistant professor of electrical engineering at Yale and the study's senior author, who has collaborated with a diverse team of scientists for this study.

"Each cell normally has two to six flagella that can rotate together as a bundle and act as a propeller to drive the cell forward. Away from any boundaries, the cells swim in a straight line, but near a surface, opposing forces of flow and bacterial forward motion cause the bacteria to continuously swim to one side — to the left." The study determined that swimming "to the left" is a hydrodynamic process that is fundamentally related to the way the cells propel themselves in this manner.

Köser and his colleagues show that this phenomenon allows flagellated bacteria, such as E. coli, to find crevices or imperfections on the surface, get trapped, and swim upstream. This allows the bacteria to eventually locate large reservoirs with richer sources of food and better conditions for multiplying.

"We think that upstream swimming of bacteria may be relevant to the transport of E. coli in the urinary tract," said Köser. "It might also explain the high rates of infection in catheterized patients and the incidence of microbial contamination at protected wellheads. To our knowledge, this is the first time that a natural propensity to swim upstream has been discovered and described in bacteria."

To study the hydrodynamics of these bacteria in a flow environment, Köser's team constructed microfluidic devices using soft lithography. Inside the devices they set up various flow patterns to observe the bacteria in channels that were only 150 or 300 microns wide and between 50 and 450 microns deep. They were able to observe how the bacteria moved at a wide range of flow rates — between 0.05 and 20 microliters per minute.

Source: Yale University

Explore further: Scientists provide new data on the nature of dark matter

add to favorites email to friend print save as pdf

Related Stories

Scientists tackling Gulf of Mexico hypoxia

Feb 12, 2015

Bouncing along the edge of a field, Larry Berry points across the pasture toward a tree line marking the path of a creek bed. A small plastic shed sits atop a wooden platform on stilts.

How Paramecium protozoa claw their way to the top

Sep 19, 2014

The ability to swim upwards – towards the sun and food supplies – is vital for many aquatic microorganisms. Exactly how they are able to differentiate between above and below in often murky waters is ...

Microscopic rowing—without a cox

Jul 29, 2014

Many different types of cell, including sperm, bacteria and algae, propel themselves using whip-like appendages known as flagella. These protrusions, about one-hundredth of a millimetre long, function like ...

Researchers explain emergence of bacterial vortex

Jun 23, 2014

When a bunch of B. subtilis bacteria are confined within a droplet of water, a very strange thing happens. The chaotic motion of all those individual swimmers spontaneously organizes into a swirling vortex ...

Recommended for you

Scientists provide new data on the nature of dark matter

5 hours ago

Recent research conducted by scientists from the University of Granada sheds light on the nature of dark matter, one of the most important mysteries in physics. As indirect evidence provided by its gravitational ...

Giant virus revealed in 3-D using X-ray laser

8 hours ago

For the first time, researchers have produced a 3-D image revealing part of the inner structure of an intact, infectious virus, using a unique X-ray laser at the Department of Energy's SLAC National Accelerator ...

Magnetic vortices in nanodisks reveal information

9 hours ago

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Forschungszentrum Jülich (FZJ) together with a colleague at the French Centre National de la Recherche Scientifique (CNRS) in Strasbourg ...

Breakthrough in OLED technology

Mar 02, 2015

Organic light emitting diodes (OLEDs), which are made from carbon-containing materials, have the potential to revolutionize future display technologies, making low-power displays so thin they'll wrap or fold ...

Throwing light on a mysterious human 'superpower'

Mar 02, 2015

Most people, at some point in their lives, have dreamt of being able to fly like Superman or develop superhuman strength like the Hulk. But very few know that we human beings have a "superpower" of our own, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.