New Nanoparticle Structure Boosts Magnetic Properties

Dec 19, 2005

Magnetic nanoparticles have shown promise as contrast-enhancing agents for improving cancer detection using magnetic resonance imaging (MRI), as miniaturized heaters capable of killing malignant cells, and as targeted drug delivery vehicles. Now, researchers at the University of Idaho have developed a new type of nanoparticle that produces a magnetic field up to 10 times stronger than typical iron oxide nanoparticles. Clearer MRI images of small tumors and more accurate tumor targeting could be the result.

A research team led by You Qiang, Ph.D., reports in the Journal of Nanoparticle Research that it has developed a method for creating iron nanostructured clusters that can then be coated with a thin layer of iron oxide. The investigators also discuss how their method can create these so-called “core-shell” nanoparticles of exact size ranging from 2 nanometers to 100 nanometers in diameter.

Characterization of these core-shell nanostructures show that their magnetic moment, a measure of their strength as a magnet, depends on the size of the final particle – particles with a diameter of 3 nanometers have a magnetic moment of 80 emu (the unit of magnetic moment) per gram, while those with a diameter of 100 nanometer have a magnetic moment of 205 emu per gram, close to the maximum value for pure iron. In contrast, typical iron oxide nanoparticles have a magnetic moment of 20 to 30 emu per gram.

This work is detailed in a paper titled, “Iron/iron oxide core-shell nanoclusters for biomedical applications.” This paper was published online in advance of print publication.

Soruce: National Cancer Institute

Explore further: Natural nanocrystals shown to strengthen concrete

Related Stories

Magnetic vortices in nanodisks reveal information

Mar 03, 2015

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Forschungszentrum Jülich (FZJ) together with a colleague at the French Centre National de la Recherche Scientifique (CNRS) in Strasbourg ...

Insight into inner magnetic layers

Feb 17, 2015

Research teams from Paris, Madrid and Berlin have observed for the first time how magnetic domains mutually influence one another at interfaces of spintronic components. Using measurements taken at BESSY ...

How iron feels the heat

Feb 13, 2015

As you heat up a piece of iron, the arrangement of the iron atoms changes several times before melting. This unusual behavior is one reason why steel, in which iron plays a starring role, is so sturdy and ...

Recommended for you

Natural nanocrystals shown to strengthen concrete

5 hours ago

Cellulose nanocrystals derived from industrial byproducts have been shown to increase the strength of concrete, representing a potential renewable additive to improve the ubiquitous construction material.

From tobacco to cyberwood

Mar 30, 2015

Swiss scientists from ETH Zurich have developed a thermometer that is at least 100 times more sensitive than previous temperature sensors. It consists of a bio-synthetic hybrid material of tobacco cells and nanotubes.

Scientists convert microbubbles to nanoparticles

Mar 30, 2015

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.